Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212971575> ?p ?o ?g. }
- W4212971575 endingPage "2066" @default.
- W4212971575 startingPage "2053" @default.
- W4212971575 abstract "Recent deep convolutional neural networks for real-world noisy image denoising have shown a huge boost in performance by training a well-engineered network over external image pairs. However, most of these methods are generally trained with supervision. Once the testing data is no longer compatible with the training conditions, they can exhibit poor generalization and easily result in severe overfitting or degrading performances. To tackle this barrier, we propose a novel denoising algorithm, dubbed as Meta PID Attention Network (MPA-Net). Our MPA-Net is built based upon stacking Meta PID Attention Modules (MPAMs). In each MPAM, we utilize a second-order attention module (SAM) to exploit the channel-wise feature correlations with second-order statistics, which are then adaptively updated via a proportional-integral-derivative (PID) guided meta-learning framework. This learning framework exerts the unique property of the PID controller and meta-learning scheme to dynamically generate filter weights for beneficial update of the extracted features within a feedback control system. Moreover, the dynamic nature of the framework enables the generated weights to be flexibly tweaked according to the input at test time. Thus, MPAM not only achieves discriminative feature learning, but also facilitates a robust generalization ability on distinct noises for real images. Extensive experiments on ten datasets are conducted to inspect the effectiveness of the proposed MPA-Net quantitatively and qualitatively, which demonstrates both its superior denoising performance and promising generalization ability that goes beyond those of the state-of-the-art denoising methods." @default.
- W4212971575 created "2022-02-24" @default.
- W4212971575 creator A5050127869 @default.
- W4212971575 creator A5056722568 @default.
- W4212971575 creator A5056953478 @default.
- W4212971575 creator A5068110988 @default.
- W4212971575 date "2022-01-01" @default.
- W4212971575 modified "2023-10-18" @default.
- W4212971575 title "Meta PID Attention Network for Flexible and Efficient Real-World Noisy Image Denoising" @default.
- W4212971575 cites W1504409388 @default.
- W4212971575 cites W1906770428 @default.
- W4212971575 cites W1930824406 @default.
- W4212971575 cites W1966385142 @default.
- W4212971575 cites W2022416860 @default.
- W4212971575 cites W2047710600 @default.
- W4212971575 cites W2048695508 @default.
- W4212971575 cites W2058005980 @default.
- W4212971575 cites W2117539524 @default.
- W4212971575 cites W2127701282 @default.
- W4212971575 cites W2130184048 @default.
- W4212971575 cites W2130975789 @default.
- W4212971575 cites W2131686571 @default.
- W4212971575 cites W2156015172 @default.
- W4212971575 cites W2172275395 @default.
- W4212971575 cites W2469031810 @default.
- W4212971575 cites W2519963891 @default.
- W4212971575 cites W2556068545 @default.
- W4212971575 cites W2601789736 @default.
- W4212971575 cites W2613155248 @default.
- W4212971575 cites W2613184245 @default.
- W4212971575 cites W2727650663 @default.
- W4212971575 cites W2741137940 @default.
- W4212971575 cites W2781895760 @default.
- W4212971575 cites W2798278116 @default.
- W4212971575 cites W2798391154 @default.
- W4212971575 cites W2798664922 @default.
- W4212971575 cites W2799192307 @default.
- W4212971575 cites W2799868534 @default.
- W4212971575 cites W2820727372 @default.
- W4212971575 cites W2949248079 @default.
- W4212971575 cites W2954930822 @default.
- W4212971575 cites W2962767526 @default.
- W4212971575 cites W2963031226 @default.
- W4212971575 cites W2963315679 @default.
- W4212971575 cites W2963420686 @default.
- W4212971575 cites W2963507294 @default.
- W4212971575 cites W2963680240 @default.
- W4212971575 cites W2963725279 @default.
- W4212971575 cites W2964770820 @default.
- W4212971575 cites W2974585710 @default.
- W4212971575 cites W2983315964 @default.
- W4212971575 cites W3000775737 @default.
- W4212971575 cites W3000813620 @default.
- W4212971575 cites W3034504121 @default.
- W4212971575 cites W3035383808 @default.
- W4212971575 cites W3048092834 @default.
- W4212971575 cites W3081108418 @default.
- W4212971575 cites W3084306245 @default.
- W4212971575 cites W3104725225 @default.
- W4212971575 cites W3106758205 @default.
- W4212971575 cites W3119346136 @default.
- W4212971575 cites W3165862556 @default.
- W4212971575 cites W4242059867 @default.
- W4212971575 doi "https://doi.org/10.1109/tip.2022.3150294" @default.
- W4212971575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35167451" @default.
- W4212971575 hasPublicationYear "2022" @default.
- W4212971575 type Work @default.
- W4212971575 citedByCount "11" @default.
- W4212971575 countsByYear W42129715752022 @default.
- W4212971575 countsByYear W42129715752023 @default.
- W4212971575 crossrefType "journal-article" @default.
- W4212971575 hasAuthorship W4212971575A5050127869 @default.
- W4212971575 hasAuthorship W4212971575A5056722568 @default.
- W4212971575 hasAuthorship W4212971575A5056953478 @default.
- W4212971575 hasAuthorship W4212971575A5068110988 @default.
- W4212971575 hasConcept C119857082 @default.
- W4212971575 hasConcept C127413603 @default.
- W4212971575 hasConcept C133731056 @default.
- W4212971575 hasConcept C134306372 @default.
- W4212971575 hasConcept C138885662 @default.
- W4212971575 hasConcept C153180895 @default.
- W4212971575 hasConcept C154945302 @default.
- W4212971575 hasConcept C163294075 @default.
- W4212971575 hasConcept C177148314 @default.
- W4212971575 hasConcept C188441871 @default.
- W4212971575 hasConcept C22019652 @default.
- W4212971575 hasConcept C2776401178 @default.
- W4212971575 hasConcept C33923547 @default.
- W4212971575 hasConcept C41008148 @default.
- W4212971575 hasConcept C41895202 @default.
- W4212971575 hasConcept C47116090 @default.
- W4212971575 hasConcept C50644808 @default.
- W4212971575 hasConcept C536315585 @default.
- W4212971575 hasConcept C81363708 @default.
- W4212971575 hasConcept C97931131 @default.
- W4212971575 hasConceptScore W4212971575C119857082 @default.
- W4212971575 hasConceptScore W4212971575C127413603 @default.
- W4212971575 hasConceptScore W4212971575C133731056 @default.