Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212984945> ?p ?o ?g. }
- W4212984945 endingPage "247" @default.
- W4212984945 startingPage "220" @default.
- W4212984945 abstract "Understanding the temporal dynamics and drivers of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) provides a critical link to better management of nutrient-related impacts such as eutrophication and harmful algal blooms (HABs). DIN and DIP are a primary control on persistent eutrophication and HABs in the Pacific Northwest (PNW). An understudied phenomenon, this paper examines multi-decadal trends in DIN and DIP concentrations and loads, and their relationships to climatic and hydrologic factors (e.g., stream and air temperature, discharge, precipitation) in the PNW. Dissolved constituents act as a broad sentinel of linkages between watershed and in-stream mechanisms such as nitrification, denitrification, nutrient use efficiency, evapotranspiration, hydrologic connectivity, groundwater extraction, irrigation, and land uses. As opposed to the total N and P often used in individual, autochthonous, lentic systems, DIN and DIP are used here as measures of multiscaled processes in allochthonous lotic systems with diverse flow paths. Time-series data from public agencies were used for up to 20 years in river outlets from the Willamette, Salmon, Spokane, and Yakima watersheds. Seasonal Mann Kendall (SMK) tests suggest significant decreasing multi-decadal trends in DIN and DIP loads for three out of four watersheds (for DIN, SMK = −0.104; for DIP, SMK = −0.081, −0.181, and −0.213), significant decreasing trends in DIN concentrations for one of the four watersheds (SMK = −0.144), and significant decreasing trends in DIP concentrations in three of the four watersheds (SMK = −0.120, −0.135, and −0.157). Multivariate regressions found significant relationships for concentrations, loads, and ratios when regressed against stream and air temperatures, precipitation, and discharge (16 significant regressions, with adjusted R2 values between 0.016 and 0.65). Highlights of these regression results are as follows: (1) precipitation, discharge, and water and air temperatures help to explain DIN and DIP concentrations and loads, (2) changes in DIN concentrations are sensitive to more hydroclimatic variables than DIP concentrations, and (3) DIP concentrations are positively correlated with stream temperature while DIP loads are negatively correlated with stream temperature. Furthermore, seasonal changes in nutrients — and their potential to alter aquatic productivity during a year — has received little attention in the literature. Regressions established significant seasonality or monthly variation of DIN and DIP concentrations and loads in all four watersheds (20 significant regressions, with adjusted R2 values between 0.038–0.65). Nutrient thresholds of DIN (0.3–0.5 mg/L) and DIP (0.05–0.005 mg/L) concentrations were used to analyze N- and P-limitation. P-limitation is known to occur in lakes, and N-limitation is known to occur in rivers. Surprisingly, except for one watershed (Salmon), nutrient concentrations for both DIN and DIP in all watersheds were shown to be above the limitation thresholds across multiple seasons. In certain situations, such as where significant decreasing trends continue, the DIN:DIP ratio suggests seasonal switching between N- and P-limited could create ideal conditions for HABs. The findings of this study have important implications for water resource management issues such as agriculture, land use development, fish populations, timber harvests, water quality, and public health." @default.
- W4212984945 created "2022-02-24" @default.
- W4212984945 creator A5084541536 @default.
- W4212984945 date "2022-02-15" @default.
- W4212984945 modified "2023-09-25" @default.
- W4212984945 title "Nutrients across Time: Relationships with Climate, Hydrology, and Land Use in Four Rivers of the Pacific Northwest" @default.
- W4212984945 cites W14197507 @default.
- W4212984945 cites W1481635732 @default.
- W4212984945 cites W1482867610 @default.
- W4212984945 cites W1537053633 @default.
- W4212984945 cites W1588163064 @default.
- W4212984945 cites W173844181 @default.
- W4212984945 cites W1818480214 @default.
- W4212984945 cites W1849450806 @default.
- W4212984945 cites W1965362203 @default.
- W4212984945 cites W1969296604 @default.
- W4212984945 cites W1970257577 @default.
- W4212984945 cites W1973421413 @default.
- W4212984945 cites W1973501911 @default.
- W4212984945 cites W1975379699 @default.
- W4212984945 cites W1976870168 @default.
- W4212984945 cites W1977185917 @default.
- W4212984945 cites W1978007507 @default.
- W4212984945 cites W1995246096 @default.
- W4212984945 cites W1995279076 @default.
- W4212984945 cites W1995990541 @default.
- W4212984945 cites W1997054429 @default.
- W4212984945 cites W2001299330 @default.
- W4212984945 cites W2001614007 @default.
- W4212984945 cites W2016804465 @default.
- W4212984945 cites W2017019925 @default.
- W4212984945 cites W2026640551 @default.
- W4212984945 cites W2034347104 @default.
- W4212984945 cites W2039488026 @default.
- W4212984945 cites W2047756642 @default.
- W4212984945 cites W2050689980 @default.
- W4212984945 cites W2052272720 @default.
- W4212984945 cites W2057768133 @default.
- W4212984945 cites W2060872015 @default.
- W4212984945 cites W2066579884 @default.
- W4212984945 cites W2069736503 @default.
- W4212984945 cites W2075890664 @default.
- W4212984945 cites W2076323549 @default.
- W4212984945 cites W2082469231 @default.
- W4212984945 cites W2085624756 @default.
- W4212984945 cites W2086249088 @default.
- W4212984945 cites W2089464458 @default.
- W4212984945 cites W2090157291 @default.
- W4212984945 cites W2092257883 @default.
- W4212984945 cites W2097523761 @default.
- W4212984945 cites W2098480391 @default.
- W4212984945 cites W2099180624 @default.
- W4212984945 cites W2099290206 @default.
- W4212984945 cites W2101791894 @default.
- W4212984945 cites W2107538102 @default.
- W4212984945 cites W2115786653 @default.
- W4212984945 cites W2117067884 @default.
- W4212984945 cites W2125463545 @default.
- W4212984945 cites W2131654731 @default.
- W4212984945 cites W2135689040 @default.
- W4212984945 cites W2137595065 @default.
- W4212984945 cites W2138330637 @default.
- W4212984945 cites W2138903269 @default.
- W4212984945 cites W2147507551 @default.
- W4212984945 cites W2152379234 @default.
- W4212984945 cites W2161419075 @default.
- W4212984945 cites W2164087962 @default.
- W4212984945 cites W2165360549 @default.
- W4212984945 cites W2171717081 @default.
- W4212984945 cites W2220830981 @default.
- W4212984945 cites W2288828522 @default.
- W4212984945 cites W2336395294 @default.
- W4212984945 cites W2343594031 @default.
- W4212984945 cites W2491382239 @default.
- W4212984945 cites W2492530457 @default.
- W4212984945 cites W2519484296 @default.
- W4212984945 cites W2535134839 @default.
- W4212984945 cites W2767071721 @default.
- W4212984945 cites W2771422946 @default.
- W4212984945 cites W2789573189 @default.
- W4212984945 cites W2805965112 @default.
- W4212984945 cites W2809867831 @default.
- W4212984945 cites W2884859931 @default.
- W4212984945 cites W2903192587 @default.
- W4212984945 cites W2909476360 @default.
- W4212984945 cites W3033506584 @default.
- W4212984945 cites W3137296164 @default.
- W4212984945 cites W4244759617 @default.
- W4212984945 cites W65252119 @default.
- W4212984945 cites W967050016 @default.
- W4212984945 doi "https://doi.org/10.1111/1752-1688.12993" @default.
- W4212984945 hasPublicationYear "2022" @default.
- W4212984945 type Work @default.
- W4212984945 citedByCount "1" @default.
- W4212984945 countsByYear W42129849452023 @default.
- W4212984945 crossrefType "journal-article" @default.
- W4212984945 hasAuthorship W4212984945A5084541536 @default.
- W4212984945 hasConcept C110872660 @default.