Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212989810> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4212989810 endingPage "S456" @default.
- W4212989810 startingPage "S455" @default.
- W4212989810 abstract "Introduction Artificial intelligence algorithms are increasingly used to highlight refined qualifiers of pathologies and to build treatment protocols based on them. These possibilities open up new perspectives for personalized interventions in psychotherapy. The affective neurosciences that link psychopathological phenomena to the hypersensitization of emotional systems are an excellent field of application of deep learning algorithms Objectives In this contribution we present the standardization of a psychodiagnostic test that can be analyzed with a deep learning algorithm for the development of personalized treatments for depressive disorders in a perspective of precision psychotherapy Methods Previously we have constructed a psychodiagnostic test that correlates the psychopathological characteristics to the emotional systems described in affective neuroscience. The construction of this test was carried out with the use of a neural network that discriminated 161 items from a pull of 300 psychopathological and character descriptions. In the present work, the 161 selected items were compared, in a sample of 600 subjects, with the measurement of sadness described in the Panksepp model. Comparation was performed with linear and non-linear statistical analysis methods. Results The items emerging from the statistical analyzes as strongly indicative of a hypersensitivity of the sadness system outline a psychopathological profile for which it is possible to adapt specific psychotherapeutic treatment protocols. Conclusions In future prospect, neurobiological and psychophysiological variables such as heart rate variability, skin conductance and activity of the areas of the cortex, measured with a scanner of the near infrared photons, will be correlated to these descriptors of psychopathology." @default.
- W4212989810 created "2022-02-24" @default.
- W4212989810 creator A5001087307 @default.
- W4212989810 creator A5061875300 @default.
- W4212989810 creator A5069098889 @default.
- W4212989810 creator A5077949586 @default.
- W4212989810 creator A5086875228 @default.
- W4212989810 date "2021-04-01" @default.
- W4212989810 modified "2023-09-24" @default.
- W4212989810 title "Phenomenological experience personality profile: A test to identify the affective dimensions of psychopathology in the context of precision psychotherapy" @default.
- W4212989810 doi "https://doi.org/10.1192/j.eurpsy.2021.1217" @default.
- W4212989810 hasPublicationYear "2021" @default.
- W4212989810 type Work @default.
- W4212989810 citedByCount "1" @default.
- W4212989810 countsByYear W42129898102023 @default.
- W4212989810 crossrefType "journal-article" @default.
- W4212989810 hasAuthorship W4212989810A5001087307 @default.
- W4212989810 hasAuthorship W4212989810A5061875300 @default.
- W4212989810 hasAuthorship W4212989810A5069098889 @default.
- W4212989810 hasAuthorship W4212989810A5077949586 @default.
- W4212989810 hasAuthorship W4212989810A5086875228 @default.
- W4212989810 hasBestOaLocation W42129898101 @default.
- W4212989810 hasConcept C123273963 @default.
- W4212989810 hasConcept C151730666 @default.
- W4212989810 hasConcept C15744967 @default.
- W4212989810 hasConcept C180747234 @default.
- W4212989810 hasConcept C2777267654 @default.
- W4212989810 hasConcept C2779302386 @default.
- W4212989810 hasConcept C2779343474 @default.
- W4212989810 hasConcept C2779812673 @default.
- W4212989810 hasConcept C542102704 @default.
- W4212989810 hasConcept C70410870 @default.
- W4212989810 hasConcept C86803240 @default.
- W4212989810 hasConceptScore W4212989810C123273963 @default.
- W4212989810 hasConceptScore W4212989810C151730666 @default.
- W4212989810 hasConceptScore W4212989810C15744967 @default.
- W4212989810 hasConceptScore W4212989810C180747234 @default.
- W4212989810 hasConceptScore W4212989810C2777267654 @default.
- W4212989810 hasConceptScore W4212989810C2779302386 @default.
- W4212989810 hasConceptScore W4212989810C2779343474 @default.
- W4212989810 hasConceptScore W4212989810C2779812673 @default.
- W4212989810 hasConceptScore W4212989810C542102704 @default.
- W4212989810 hasConceptScore W4212989810C70410870 @default.
- W4212989810 hasConceptScore W4212989810C86803240 @default.
- W4212989810 hasIssue "S1" @default.
- W4212989810 hasLocation W42129898101 @default.
- W4212989810 hasOpenAccess W4212989810 @default.
- W4212989810 hasPrimaryLocation W42129898101 @default.
- W4212989810 hasRelatedWork W1979551172 @default.
- W4212989810 hasRelatedWork W2067619701 @default.
- W4212989810 hasRelatedWork W2130046626 @default.
- W4212989810 hasRelatedWork W2131899124 @default.
- W4212989810 hasRelatedWork W2141960318 @default.
- W4212989810 hasRelatedWork W2317019403 @default.
- W4212989810 hasRelatedWork W2325219416 @default.
- W4212989810 hasRelatedWork W2561517588 @default.
- W4212989810 hasRelatedWork W2964519348 @default.
- W4212989810 hasRelatedWork W4236194524 @default.
- W4212989810 hasVolume "64" @default.
- W4212989810 isParatext "false" @default.
- W4212989810 isRetracted "false" @default.
- W4212989810 workType "article" @default.