Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212998064> ?p ?o ?g. }
- W4212998064 endingPage "732" @default.
- W4212998064 startingPage "719" @default.
- W4212998064 abstract "Recent years have seen a paradigm shift in assessing the performance of assets in response to disruptive hazards, in that resilience is seen as a more inclusive and over-arching decision variable. This shift in decision drivers provides a better picture of asset behavior in response to hazardous events such as earthquakes and hurricanes. Since highway bridges are among the most critical and vulnerable components of transportation networks, evaluating their functionality under extreme events leads to well-informed decision-making. Whilst there is an ever-growing interest in resilience-based hazard assessment in a wide range of infrastructure sectors, there is limited attention on identifying resilience drivers as a function of hazard and asset characteristics. To this end, this paper presents a framework for probabilistic resilience assessment of a cohort of common highway bridges subjected to a wide range of ground acceleration intensities. This study presents the first ensemble learning-based predictive model using bagging and boosting techniques to predict resilience index as a function of seismic events and asset characteristics on bridge resilience. The hypermeters and input structure of the predictive model are optimized to reduce complexity and maximize efficiency. The findings show that the proposed model performs with a 75–95% success rate in predicting resilience as a function of structural characteristics and peak ground acceleration. This model provides useful insights on the impact of various parameters and drivers of resilience in concrete box-girder bridges." @default.
- W4212998064 created "2022-02-24" @default.
- W4212998064 creator A5002291803 @default.
- W4212998064 creator A5010904829 @default.
- W4212998064 date "2022-04-01" @default.
- W4212998064 modified "2023-10-13" @default.
- W4212998064 title "Bridge seismic hazard resilience assessment with ensemble machine learning" @default.
- W4212998064 cites W1424318399 @default.
- W4212998064 cites W1534477342 @default.
- W4212998064 cites W1584236903 @default.
- W4212998064 cites W1977548549 @default.
- W4212998064 cites W1980300379 @default.
- W4212998064 cites W1984218563 @default.
- W4212998064 cites W1996202672 @default.
- W4212998064 cites W2006237871 @default.
- W4212998064 cites W2007303161 @default.
- W4212998064 cites W2017649471 @default.
- W4212998064 cites W2032378334 @default.
- W4212998064 cites W2037050471 @default.
- W4212998064 cites W2042762031 @default.
- W4212998064 cites W2045744313 @default.
- W4212998064 cites W2048090830 @default.
- W4212998064 cites W2048697945 @default.
- W4212998064 cites W2080791146 @default.
- W4212998064 cites W2086682437 @default.
- W4212998064 cites W2087993201 @default.
- W4212998064 cites W2095046766 @default.
- W4212998064 cites W2101797084 @default.
- W4212998064 cites W2105292358 @default.
- W4212998064 cites W2107729861 @default.
- W4212998064 cites W2125415054 @default.
- W4212998064 cites W2136653283 @default.
- W4212998064 cites W2138775645 @default.
- W4212998064 cites W2141999496 @default.
- W4212998064 cites W2150957204 @default.
- W4212998064 cites W2157124852 @default.
- W4212998064 cites W2161773886 @default.
- W4212998064 cites W2168020168 @default.
- W4212998064 cites W2168800455 @default.
- W4212998064 cites W2467499221 @default.
- W4212998064 cites W2495745848 @default.
- W4212998064 cites W2526755141 @default.
- W4212998064 cites W2581772618 @default.
- W4212998064 cites W2602588427 @default.
- W4212998064 cites W2748988943 @default.
- W4212998064 cites W2758914739 @default.
- W4212998064 cites W2765886471 @default.
- W4212998064 cites W2896291989 @default.
- W4212998064 cites W2979550546 @default.
- W4212998064 cites W2986338516 @default.
- W4212998064 cites W3135815579 @default.
- W4212998064 cites W3138857999 @default.
- W4212998064 cites W4212883601 @default.
- W4212998064 cites W4230428500 @default.
- W4212998064 doi "https://doi.org/10.1016/j.istruc.2022.02.013" @default.
- W4212998064 hasPublicationYear "2022" @default.
- W4212998064 type Work @default.
- W4212998064 citedByCount "9" @default.
- W4212998064 countsByYear W42129980642022 @default.
- W4212998064 countsByYear W42129980642023 @default.
- W4212998064 crossrefType "journal-article" @default.
- W4212998064 hasAuthorship W4212998064A5002291803 @default.
- W4212998064 hasAuthorship W4212998064A5010904829 @default.
- W4212998064 hasConcept C100776233 @default.
- W4212998064 hasConcept C112930515 @default.
- W4212998064 hasConcept C121332964 @default.
- W4212998064 hasConcept C126322002 @default.
- W4212998064 hasConcept C127413603 @default.
- W4212998064 hasConcept C144133560 @default.
- W4212998064 hasConcept C154945302 @default.
- W4212998064 hasConcept C178790620 @default.
- W4212998064 hasConcept C185592680 @default.
- W4212998064 hasConcept C2779585090 @default.
- W4212998064 hasConcept C38652104 @default.
- W4212998064 hasConcept C41008148 @default.
- W4212998064 hasConcept C49261128 @default.
- W4212998064 hasConcept C49937458 @default.
- W4212998064 hasConcept C71924100 @default.
- W4212998064 hasConcept C76178495 @default.
- W4212998064 hasConcept C97355855 @default.
- W4212998064 hasConceptScore W4212998064C100776233 @default.
- W4212998064 hasConceptScore W4212998064C112930515 @default.
- W4212998064 hasConceptScore W4212998064C121332964 @default.
- W4212998064 hasConceptScore W4212998064C126322002 @default.
- W4212998064 hasConceptScore W4212998064C127413603 @default.
- W4212998064 hasConceptScore W4212998064C144133560 @default.
- W4212998064 hasConceptScore W4212998064C154945302 @default.
- W4212998064 hasConceptScore W4212998064C178790620 @default.
- W4212998064 hasConceptScore W4212998064C185592680 @default.
- W4212998064 hasConceptScore W4212998064C2779585090 @default.
- W4212998064 hasConceptScore W4212998064C38652104 @default.
- W4212998064 hasConceptScore W4212998064C41008148 @default.
- W4212998064 hasConceptScore W4212998064C49261128 @default.
- W4212998064 hasConceptScore W4212998064C49937458 @default.
- W4212998064 hasConceptScore W4212998064C71924100 @default.
- W4212998064 hasConceptScore W4212998064C76178495 @default.
- W4212998064 hasConceptScore W4212998064C97355855 @default.
- W4212998064 hasLocation W42129980641 @default.