Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212998146> ?p ?o ?g. }
- W4212998146 endingPage "A165" @default.
- W4212998146 startingPage "A165" @default.
- W4212998146 abstract "Context. The energetics and physical conditions of the interstellar medium and feedback processes remain challenging to probe. Aims. Shocks, modelled over a broad range of parameters, are used to construct a new tool to deduce the mechanical energy and physical conditions from observed atomic or molecular emission lines. Methods. We compute magnetised, molecular shock models with velocities V s = 5–80 km s −1 , pre-shock proton densities n H = 10 2 –10 6 cm −3 , weak or moderate magnetic field strengths, and in the absence or presence of an external UV radiation field. These parameters represent the broadest published range of physical conditions for molecular shocks. As a key shock tracer, we focus on the production of CH + and post-process the radiative transfer of its rovibrational lines. We develop a simple emission model of an ensemble of shocks for connecting any observed emission lines to the mechanical energy and physical conditions of the system. Results. For this range of parameters, we find the full diversity (C-, C * -, CJ-, and J-type) of magnetohydrodynamic shocks. H 2 and H are dominant coolants, with up to 30% of the shock kinetic flux escaping in Ly α photons. The reformation of molecules in the cooling tail means H 2 is even a good tracer of dissociative shocks and shocks that were initially fully atomic. The known shock tracer CH + can also be a significant coolant, reprocessing up to 1% of the kinetic flux. Its production and excitation is intimately linked to the presence of H 2 and C + . For each shock model we provide integrated intensities of rovibrational lines of H 2 , CO, and CH + , and atomic H lines, and atomic fine-structure and metastable lines. We demonstrate how to use these shock models to deduce the mechanical energy and physical conditions of extragalactic environments. As a template example, we interpret the CH + (1−0) emission from the Eyelash starburst galaxy. A mechanical energy injection rate of at least 10 11 L ⊙ into molecular shocks is required to reproduce the observed line. We find that shocks with velocities as low as 5 km s −1 irradiated by a strong UV field are compatible with the available energy budget. The low-velocity, externally irradiated shocks are at least an order magnitude more efficient than the most efficient shocks with no external irradiation in terms of the total mechanical energy required. We predict differences of more than two orders of magnitude in the intensities of the pure rotational lines of CO, Ly α , and the metastable lines of O, S + , and N between representative models of low-velocity ( V s ~ 10 km s −1 ) externally irradiated shocks and higher-velocity shocks ( V s ≥ 50 km s −1 ) with no external irradiation. Conclusions. Shock modelling over an extensive range of physical conditions allows for the interpretation of challenging observations of broad line emission from distant galaxies. Our new method opens up a promising avenue to quantitatively probe the physical conditions and mechanical energy of galaxy-scale gas flows." @default.
- W4212998146 created "2022-02-24" @default.
- W4212998146 creator A5033795907 @default.
- W4212998146 creator A5038704030 @default.
- W4212998146 creator A5054918987 @default.
- W4212998146 creator A5058041723 @default.
- W4212998146 creator A5090259393 @default.
- W4212998146 date "2022-02-01" @default.
- W4212998146 modified "2023-10-10" @default.
- W4212998146 title "Self-generated ultraviolet radiation in molecular shock waves" @default.
- W4212998146 cites W1449055722 @default.
- W4212998146 cites W1966186851 @default.
- W4212998146 cites W1973196718 @default.
- W4212998146 cites W1986452731 @default.
- W4212998146 cites W1993230081 @default.
- W4212998146 cites W1993269456 @default.
- W4212998146 cites W2006403475 @default.
- W4212998146 cites W2006645409 @default.
- W4212998146 cites W2019402706 @default.
- W4212998146 cites W2019944831 @default.
- W4212998146 cites W2066075409 @default.
- W4212998146 cites W2067436034 @default.
- W4212998146 cites W2087043769 @default.
- W4212998146 cites W2098485899 @default.
- W4212998146 cites W2138093180 @default.
- W4212998146 cites W2152968446 @default.
- W4212998146 cites W2170243185 @default.
- W4212998146 cites W2221913623 @default.
- W4212998146 cites W2418081591 @default.
- W4212998146 cites W2496719331 @default.
- W4212998146 cites W2581442249 @default.
- W4212998146 cites W2584298142 @default.
- W4212998146 cites W2606614764 @default.
- W4212998146 cites W2607056676 @default.
- W4212998146 cites W2744260194 @default.
- W4212998146 cites W2752997375 @default.
- W4212998146 cites W2754043835 @default.
- W4212998146 cites W2895311893 @default.
- W4212998146 cites W2979293453 @default.
- W4212998146 cites W2979621597 @default.
- W4212998146 cites W3037641373 @default.
- W4212998146 cites W3092303506 @default.
- W4212998146 cites W3100194897 @default.
- W4212998146 cites W3100526457 @default.
- W4212998146 cites W3101088747 @default.
- W4212998146 cites W3103098502 @default.
- W4212998146 cites W3103766418 @default.
- W4212998146 cites W3104813694 @default.
- W4212998146 cites W3105554824 @default.
- W4212998146 cites W3105773893 @default.
- W4212998146 cites W3106379278 @default.
- W4212998146 cites W3120421200 @default.
- W4212998146 cites W3120759446 @default.
- W4212998146 cites W3167262052 @default.
- W4212998146 cites W3173020209 @default.
- W4212998146 cites W3192654875 @default.
- W4212998146 cites W4288079375 @default.
- W4212998146 cites W4288079944 @default.
- W4212998146 cites W4288608926 @default.
- W4212998146 cites W4293256955 @default.
- W4212998146 doi "https://doi.org/10.1051/0004-6361/202141487" @default.
- W4212998146 hasPublicationYear "2022" @default.
- W4212998146 type Work @default.
- W4212998146 citedByCount "7" @default.
- W4212998146 countsByYear W42129981462022 @default.
- W4212998146 countsByYear W42129981462023 @default.
- W4212998146 crossrefType "journal-article" @default.
- W4212998146 hasAuthorship W4212998146A5033795907 @default.
- W4212998146 hasAuthorship W4212998146A5038704030 @default.
- W4212998146 hasAuthorship W4212998146A5054918987 @default.
- W4212998146 hasAuthorship W4212998146A5058041723 @default.
- W4212998146 hasAuthorship W4212998146A5090259393 @default.
- W4212998146 hasBestOaLocation W42129981461 @default.
- W4212998146 hasConcept C121332964 @default.
- W4212998146 hasConcept C126322002 @default.
- W4212998146 hasConcept C135889238 @default.
- W4212998146 hasConcept C151730666 @default.
- W4212998146 hasConcept C167812310 @default.
- W4212998146 hasConcept C181500209 @default.
- W4212998146 hasConcept C184779094 @default.
- W4212998146 hasConcept C2779343474 @default.
- W4212998146 hasConcept C2781300812 @default.
- W4212998146 hasConcept C44870925 @default.
- W4212998146 hasConcept C57879066 @default.
- W4212998146 hasConcept C62520636 @default.
- W4212998146 hasConcept C70477161 @default.
- W4212998146 hasConcept C71924100 @default.
- W4212998146 hasConcept C74650414 @default.
- W4212998146 hasConcept C74902906 @default.
- W4212998146 hasConcept C86803240 @default.
- W4212998146 hasConceptScore W4212998146C121332964 @default.
- W4212998146 hasConceptScore W4212998146C126322002 @default.
- W4212998146 hasConceptScore W4212998146C135889238 @default.
- W4212998146 hasConceptScore W4212998146C151730666 @default.
- W4212998146 hasConceptScore W4212998146C167812310 @default.
- W4212998146 hasConceptScore W4212998146C181500209 @default.
- W4212998146 hasConceptScore W4212998146C184779094 @default.
- W4212998146 hasConceptScore W4212998146C2779343474 @default.