Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213012075> ?p ?o ?g. }
- W4213012075 endingPage "109" @default.
- W4213012075 startingPage "98" @default.
- W4213012075 abstract "Distant metastasis often indicates a poor prognosis, so early screening and diagnosis play a significant role. Our study aims to construct and verify a predictive model based on machine learning (ML) algorithms that can estimate the risk of distant metastasis of newly diagnosed follicular thyroid carcinoma (FTC).This was a retrospective study based on the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2015.A total of 5809 FTC patients were included in the data analysis. Among them, there were 214 (3.68%) cases with distant metastasis.Univariate and multivariate logistic regression (LR) analyses were used to determine independent risk factors. Seven commonly used ML algorithms were applied for predictive model construction. We used the area under the receiver-operating characteristic (AUROC) curve to select the best ML algorithm. The optimal model was trained through 10-fold cross-validation and visualized by SHapley Additive exPlanations (SHAP). Finally, we compared it with the traditional LR method.In terms of predicting distant metastasis, the AUROCs of the seven ML algorithms were 0.746-0.836 in the test set. Among them, the Extreme Gradient Boosting (XGBoost) had the best prediction performance, with an AUROC of 0.836 (95% confidence interval [CI]: 0.775-0.897). After 10-fold cross-validation, its predictive power could reach the best [AUROC: 0.855 (95% CI: 0.803-0.906)], which was slightly higher than the classic binary LR model [AUROC: 0.845 (95% CI: 0.818-0.873)].The XGBoost approach was comparable to the conventional LR method for predicting the risk of distant metastasis for FTC." @default.
- W4213012075 created "2022-02-24" @default.
- W4213012075 creator A5012974470 @default.
- W4213012075 creator A5015208505 @default.
- W4213012075 creator A5052569173 @default.
- W4213012075 creator A5067839287 @default.
- W4213012075 creator A5074014514 @default.
- W4213012075 creator A5078712054 @default.
- W4213012075 creator A5079609871 @default.
- W4213012075 creator A5084964695 @default.
- W4213012075 date "2022-02-25" @default.
- W4213012075 modified "2023-09-27" @default.
- W4213012075 title "Machine learning algorithms are comparable to conventional regression models in predicting distant metastasis of follicular thyroid carcinoma" @default.
- W4213012075 cites W1720744388 @default.
- W4213012075 cites W1991049190 @default.
- W4213012075 cites W2024268473 @default.
- W4213012075 cites W2065384885 @default.
- W4213012075 cites W2069388901 @default.
- W4213012075 cites W2085017223 @default.
- W4213012075 cites W2105981176 @default.
- W4213012075 cites W2116511574 @default.
- W4213012075 cites W2123570456 @default.
- W4213012075 cites W2411516949 @default.
- W4213012075 cites W2664267452 @default.
- W4213012075 cites W2755019103 @default.
- W4213012075 cites W2766199351 @default.
- W4213012075 cites W2768407518 @default.
- W4213012075 cites W2884597820 @default.
- W4213012075 cites W2906295032 @default.
- W4213012075 cites W2913997948 @default.
- W4213012075 cites W2980319939 @default.
- W4213012075 cites W2981311951 @default.
- W4213012075 cites W2985452234 @default.
- W4213012075 cites W2988087638 @default.
- W4213012075 cites W2999417355 @default.
- W4213012075 cites W3007001459 @default.
- W4213012075 cites W3011484826 @default.
- W4213012075 cites W3047622054 @default.
- W4213012075 cites W3093757513 @default.
- W4213012075 cites W3096452599 @default.
- W4213012075 cites W3134830552 @default.
- W4213012075 cites W3159514218 @default.
- W4213012075 doi "https://doi.org/10.1111/cen.14693" @default.
- W4213012075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35171531" @default.
- W4213012075 hasPublicationYear "2022" @default.
- W4213012075 type Work @default.
- W4213012075 citedByCount "4" @default.
- W4213012075 countsByYear W42130120752022 @default.
- W4213012075 countsByYear W42130120752023 @default.
- W4213012075 crossrefType "journal-article" @default.
- W4213012075 hasAuthorship W4213012075A5012974470 @default.
- W4213012075 hasAuthorship W4213012075A5015208505 @default.
- W4213012075 hasAuthorship W4213012075A5052569173 @default.
- W4213012075 hasAuthorship W4213012075A5067839287 @default.
- W4213012075 hasAuthorship W4213012075A5074014514 @default.
- W4213012075 hasAuthorship W4213012075A5078712054 @default.
- W4213012075 hasAuthorship W4213012075A5079609871 @default.
- W4213012075 hasAuthorship W4213012075A5084964695 @default.
- W4213012075 hasConcept C11413529 @default.
- W4213012075 hasConcept C119857082 @default.
- W4213012075 hasConcept C121608353 @default.
- W4213012075 hasConcept C126322002 @default.
- W4213012075 hasConcept C143998085 @default.
- W4213012075 hasConcept C151956035 @default.
- W4213012075 hasConcept C154945302 @default.
- W4213012075 hasConcept C2779013556 @default.
- W4213012075 hasConcept C2993294228 @default.
- W4213012075 hasConcept C41008148 @default.
- W4213012075 hasConcept C44249647 @default.
- W4213012075 hasConcept C526584372 @default.
- W4213012075 hasConcept C58471807 @default.
- W4213012075 hasConcept C71924100 @default.
- W4213012075 hasConceptScore W4213012075C11413529 @default.
- W4213012075 hasConceptScore W4213012075C119857082 @default.
- W4213012075 hasConceptScore W4213012075C121608353 @default.
- W4213012075 hasConceptScore W4213012075C126322002 @default.
- W4213012075 hasConceptScore W4213012075C143998085 @default.
- W4213012075 hasConceptScore W4213012075C151956035 @default.
- W4213012075 hasConceptScore W4213012075C154945302 @default.
- W4213012075 hasConceptScore W4213012075C2779013556 @default.
- W4213012075 hasConceptScore W4213012075C2993294228 @default.
- W4213012075 hasConceptScore W4213012075C41008148 @default.
- W4213012075 hasConceptScore W4213012075C44249647 @default.
- W4213012075 hasConceptScore W4213012075C526584372 @default.
- W4213012075 hasConceptScore W4213012075C58471807 @default.
- W4213012075 hasConceptScore W4213012075C71924100 @default.
- W4213012075 hasIssue "1" @default.
- W4213012075 hasLocation W42130120751 @default.
- W4213012075 hasLocation W42130120752 @default.
- W4213012075 hasOpenAccess W4213012075 @default.
- W4213012075 hasPrimaryLocation W42130120751 @default.
- W4213012075 hasRelatedWork W2025498382 @default.
- W4213012075 hasRelatedWork W2465911618 @default.
- W4213012075 hasRelatedWork W2611007169 @default.
- W4213012075 hasRelatedWork W2999450641 @default.
- W4213012075 hasRelatedWork W3047552631 @default.
- W4213012075 hasRelatedWork W3160561524 @default.
- W4213012075 hasRelatedWork W3174196512 @default.