Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213012169> ?p ?o ?g. }
- W4213012169 endingPage "637" @default.
- W4213012169 startingPage "586" @default.
- W4213012169 abstract "Free Access References Book Editor(s):Chris Boulton, Chris BoultonSearch for more papers by this authorDavid Quain, David QuainSearch for more papers by this author First published: 10 March 2006 https://doi.org/10.1002/9780470999417.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat References van der Aa Kuhle, A. & Jespersen, L. (1998) Detection and identification of wild yeasts in lager breweries. International Journal of Food Microbiology, 43, 205– 13. CrossrefCASPubMedGoogle Scholar van der Aar, P. (1996) Consequences of yeast population dynamics with regard to flocculence. Ferment, 9, 39– 12. Google Scholar Aastrup, S. & Erdal, K. (1987) A mass balance study of beta-glucan in malt, spent grains and wort using the calcofluor method. Proceedings of the 21st Congress of the European Brewery Convention, Madrid, 353– 60. Google Scholar Achsetter, T. & Wolf, D. H. (1985) Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae. Yeast, 1, 139– 57. Wiley Online LibraryPubMedGoogle Scholar Adams, J., Puskas-Rozsa, S., Simlar, J. & Wilkie, C. M. (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Current Genetics, 22, 13– 19. CrossrefCASPubMedWeb of Science®Google Scholar Adams, M. R., O'Brian, P. J. & Taylor, G. T. (1989) Effect of the ethanol content of beer on the heat resistance of a spoilage Lactobacillus. Journal of Applied Bacteriology, 66, 491– 5. Wiley Online LibraryCASWeb of Science®Google Scholar Aguilera, A. & Benitez, T. (1985) Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Archives of Microbiology, 142, 389– 92. CrossrefCASPubMedWeb of Science®Google Scholar Aigle, M., Erbs, D. & Moll, M. (1983) Determination of brewing yeast ploidy by DNA measurement. Journal of the Institute of Brewing, 89, 72– 4. Wiley Online LibraryWeb of Science®Google Scholar Aires Barros, M. R., Barros, M. R., Cabral, J. M. S. & Novais, J. M. (1987) Production of ethanol by immobilised Saccharomyces bayanus in an extractive fermentation system. Biotechnology & Bio-engineering, 24, 1097– 1104. Wiley Online LibraryWeb of Science®Google Scholar Aires, V., Kirsop, B. H. & Taylor, G. T. (1977) Yeast lipids. Proceedings of the 16th Congress of the European Brewery Convention, Amsterdam 255– 66. Google Scholar Akiyama-Jibiki, M., Ishibiki, T., Yamashita, H. & Eto, M. (1997) A rapid and simple assay to measure flocculation in brewer's yeast. Technical Quarterly of the Master Brewers Association of the Americas, 34, 278– 81. CASGoogle Scholar Alexandre, H., Rousseaux, I. & Charpentier, C. (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloekera apiculata. FEMS Microbiology Letters, 124, 17– 22. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Alic, M. (1999) Baker's yeast in Crohn's disease—can it kill you? American Journal of Gastroenterology, 94, 1711. CrossrefCASPubMedWeb of Science®Google Scholar Alterhum, F., Dombek, K. M. & Ingram, L. O. (1989) Regulation of glycolytic flux and ethanol production in Saccharomyces cerevisiae: effects of intracellular adenine nucleotide concentrations on the in vivo activities of hexokinase, phosphofructokinase, phosphoglycerate kinase and pyruvate kinase. Applied and Environmental Microbiology, 55, 1312– 14. PubMedWeb of Science®Google Scholar Amaha, M., Nakakoji, S. & Komiya, Y. (1977) Some experiences in the one-tank process with Asahi large capacity tanks. Proceedings of the 16th Congress of the European Brewery Convention, Amsterdam, 545– 59. Google Scholar American Society of Brewing Chemists (1992) Diacetyl. Methods of Analysis, 8th edition, published by the American Society of Brewing Chemists, Minnesota, USA, 25, 1– 6. Google Scholar Amory, D. E., Rouxhet, P. G. & Dufour, J. P. (1988) Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity. Journal of the Institute of Brewing, 94, 79– 84. Wiley Online LibraryCASWeb of Science®Google Scholar Amri, M. A., Bonaly, R. Duteurtre, B. & Moll, M. (1982) Yeast flocculation: influence of nutritional factors on cell wall composition. Journal of General Microbiology, 128, 2001– 8. CrossrefCASWeb of Science®Google Scholar Anderson, G. J., Lesuisse, E., Dancis, A., Roman, D. G., Labbe, P. & Klausner, R. D. (1992) Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. Journal of Inorganic Biochemistry, 47, 249– 55. CrossrefCASPubMedWeb of Science®Google Scholar Anderson, R. G. (1989) Yeast and the Victorian brewers: incidents and personalities in the search for the true ferment. Journal of the Institute of Brewing, 95, 337– 45. Wiley Online LibraryWeb of Science®Google Scholar Anderson, R. G. (1990) Aspects of fementation control. Ferment, 3, 242– 9. Google Scholar Anderson, R. G. (1991) Echoes of journals past. Ferment, 4, 288– 97. Google Scholar Anderson, R. G. (1993) Highlights in the history of international brewing science. Ferment, 6, 191– 8. Web of Science®Google Scholar Anderson, R. G. (1995) Louis Pasteur (1822–1895): an assessment of his impact on the brewing industry. Proceedings of the 25th Congress of the European Brewery Convention, Brussels, 13– 23. Google Scholar Andersson, L. E. & Norman, H. (1997) Water deaeration, blending and carbonation in high gravity brewing. Brauwelt International, 15, 59– 61. Google Scholar Andreason, A. A. & Stier, T. J. B. (1953) Anaerobic nutrition of Saccharomyces cerevisiae 1. Ergosterol requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology, 41, 23– 6. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Andreason, A. A. & Stier, T. J. B. (1954) Anaerobic nutrition of Saccharomyces cerevisiae 2. Unsaturated fatty acid requirements for growth in a defined medium. Journal of Cellular and Comparative Physiology, 43, 271– 8. Wiley Online LibraryWeb of Science®Google Scholar Andrews, J. & Gilliland, R. B. (1952) Super-attenuation of beer: a study of three organisms capable of causing abnormal attenuations. Journal of the Institute of Brewing, 58, 189– 96. Wiley Online LibraryCASGoogle Scholar Andrews, J. M. H. (1988) Whirlpool design and manufacture. Ferment, 1, 47– 8. Google Scholar Andries, M., Derdelinckx, G., Lone, K. G., Delvaux, F., van Beveren, P. C. & Masschelein, C. A. (1997) Zeolites as catalysts for the cold and direct conversion of acetolactate into acetoin. Proceedings of the 26th Congress of the European Brewery Convention, Maastricht, 477– 84. Google Scholar Andries, M., van Beveran, P.C., Goffin, O., Rajotte, P. & Masschelein, C. A. (1997) First results on semi-industrial continuous top fermentation with the Meura-Delta immobilised yeast reactor. Technical Quarterly of the Master Brewers Association of the Americas, 34, 119– 22. Google Scholar Annëmuller, G. & Manger, H.-J. (1997) Pitching and starting phase in cylindroconical fermenter—the black box of the fermentation and maturation process? Brauwelt, 4, 338– 41. Google Scholar Anness, B. J. (1981) The role of dimethyl sulphide in beer flavour. Proceedings of the European Brewery Convention Symposium, Monograph VII, Copenhagen, 135– 42. Google Scholar Anness, B. J. (1984) Lipids of barley, malt and adjuncts. Journal of the Institute of Brewing, 90, 315– 18. Wiley Online LibraryCASWeb of Science®Google Scholar Anness, B. J. & Bamforth, C. W. (1982) Dimethyl sulphide - a review. Journal of the Institute of Brewing, 88, 244– 52. Wiley Online LibraryCASWeb of Science®Google Scholar Anness, B. J., Bamforth, C. W. & Wainwright, T. (1979) The measurement of dimethyl sulphoxide in barley and malt and its reduction to dimethyl sulphide by yeast. Journal of the Institute of Brewing, 85, 346– 9. Wiley Online LibraryCASWeb of Science®Google Scholar Anness, B. J. & Reed, R. J. R. (1985) Lipids in wort. Journal of the Institute of Brewing, 91, 313– 17. Wiley Online LibraryCASWeb of Science®Google Scholar Anonymous (1991) Woodforde's - ‘a scaled up version of a home-brew kit’. Brewers' Guardian, January, 26–7. Google Scholar Anonymous (1992) Monitoring the flow. Brewers' Guardian, August, 27. Google Scholar Anonymous (1995) New interest in older yeast strains keeps NCYC busy. Brewers' Guardian, September, 14–15. Google Scholar Anonymous (1996a) In Cell Separation and Protein Purification, Dynal, Technical Handbook, 2nd edition, Norway. Google Scholar Anonymous (1996b) Search on ‘fungal species’. In Encarta 96 Encyclopaedia CD-ROM World English edition, Microsoft Home. Google Scholar Anonymous (1997) Compact high gravity brewing plants. Brauwelt International, 15, 260– 62. Google Scholar Anonymous (1999) Microbiological Millennia. Ferment, April/May, 45–9. Google Scholar Anraku, Y., Umemoto, N., Hirata, R. & Wada, Y. (1989) Structure and function of the yeast vacuolar membrane proton ATPase. Journal of Bioenergetics and Biomembranes, 21, 589– 603. CrossrefCASPubMedWeb of Science®Google Scholar Anselme, M. J. & Tedder, D. W. (1987) Characteristics of immobilised yeast reactors producing ethanol from glucose. Biotechnology & Bioengineering, 30, 736– 45. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar App, H. & Holzer, H. (1989) Purification and characterisation of neutral trehalase from the yeast ABYS1 mutant. Journal of Biological Chemistry, 264, 17583– 7. CASPubMedWeb of Science®Google Scholar Arcay-Ledzema, G. J. & Slaughter, J. C. (1984) The response of Saccharomyes cerevisiae to fermentation under carbon dioxide pressure. Journal of the Institute of Brewing, 90, 81– 4. Wiley Online LibraryGoogle Scholar Armitt, J. D. & Healy, P. (1974) The half-way stress in the fermentation of an Australian beer. Proceedings of the 13th Congress of the Institute of Brewing (Australia and New Zealand Section), Queensland, 91– 103. Google Scholar Arnold, W. N. (1991) Periplasmic space. In The Yeasts, 2nd edition (eds A. H. Rose and J. S. Harrison), vol. 4, pp. 279– 95. Academic Press, London. Google Scholar ASBC Analysis Committee (1980) Measurement of yeast viability. Journal of the American Society of Brewing Chemists 38, 109– 10. Google Scholar ASBC Analysis Committee (1981) Measurement of yeast viability. Journal of the American Society of Brewing Chemists 39, 86– 9. Google Scholar Aschengreen, N. H. & Jepsen, S. (1992) Use of acetolactate decarboxylase in brewing fermentations. Proceedings of the 22nd Institute of Brewing Convention, Australia and New Zealand Section, Melbourne, 80– 83. Google Scholar Ashurst, K. (1990) Methods of propagating pitching yeast. Brewing and Distilling International, 21, 28– 9. Google Scholar Aswathanarayana, N. V. (1958) Behaviour of the vacuole on stimulation of yeast cells with fresh medium. Proceedings of the Indian Academy of Sciences, 47, 225– 32. Google Scholar Atkinson, B. & Taidi, B. (1995) Technical and technological requirements for immobilised systems. Proceedings of the European Brewery Convention, Monograph, XXIV, Espoo, 17– 22. Google Scholar Atomi, H., Ueda, M., Suzuki, J., Kamada, Y. & Tanaka, A. (1993) Presence of carnitine acetyltransferase in peroxisomes and in mitochondria. FEMS Microbiology Letters, 112, 31– 4. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Attfield, P. V., Raman, A. & Northcott, C. J. (1992) Construction of Saccharomyces strains that accumulate relatively low concentrations of trehalose and their application in testing the contribution of the disaccharide to stress tolerance. FEMS Microbiology Letters, 94, 271– 6. Wiley Online LibraryCASWeb of Science®Google Scholar Augustyn, O. P. H. & Kock, J. L. F. (1989) Differentiation of yeast species, and strains within a species, by cellular fatty acid analysis. 1. Application of an adapted technique to differentiate between strains of Saccharomyces cerevisiae. Journal of Microbiological Methods, 10, 9– 23. CrossrefCASWeb of Science®Google Scholar Augustyn, O. P. H., Ferreira, D. & Kock, J. L. F. (1991) Differentiation between yeast species, and strains within a species, by cellular fatty acid analysis. Systematic and Applied Microbiology, 14, 324– 34. CrossrefCASWeb of Science®Google Scholar Ault, R. G., Hampton, A. N., Newton, R. & Roberts, R. H. (1969) Biological and biochemical aspects of tower fermentation. Journal of the Institute of Brewing, 75, 260– 76. Wiley Online LibraryCASWeb of Science®Google Scholar Austriaco, N. R. Jr (1996) Review: to bud until death: the genetics of ageing in the yeast Saccharomyces. Yeast, 12, 623– 30. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Avery, S. V. & Tobin, J. M. (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 58, 3883– 9. CrossrefCASPubMedWeb of Science®Google Scholar Avis, J. W. (1990) Microbiological quality hazard analysis. Proceedings of the 21st Congress of the Institute of Brewing (Australia & New Zealand Section). Auckland, 164– 7. Google Scholar Avis, J. W. & Smith, P. (1989) The use of ATP bioluminescence for the analysis of beer in polyethylene terephthalate (PET) bottles and associated plant. In Rapid Microbiological Methods for Foods, Beverages and Phamaceuticals, (eds C. J. Stannard, S. B. Petitt and F. A. Skinner), pp. 1– 12. Blackwell Scientific Publications, Oxford. Google Scholar Axelsson, A. (1988) Experimental studies of immobilised yeast packed bed reactors with reduced carbon dioxide entrapment. Applied Biochemistry & Biotechnology, 18, 91– 109. CrossrefCASWeb of Science®Google Scholar Ayrapaa, T. (1965) The formation of phenylethanol from [14]C-labelled phenylalnine. Journal of the Institute of Brewing, 71, 341– 7. Wiley Online LibraryCASGoogle Scholar Ayrapaa, T. (1967a) Formation of higher alcohols from [14]C-labelled valine and leucine. Journal of the Institute of Brewing, 73, 17– 30. Wiley Online LibraryCASGoogle Scholar Ayrapaa, T. (1967b) Formation of higher alcohols from amino acids derived from yeast proteins. Journal of the Institute of Brewing, 73, 30– 33. Wiley Online LibraryCASGoogle Scholar Ayrapaa, T. (1968) Formation of higher alcohols by various yeasts. Journal of the Institute of Brewing, 74, 169– 78. Wiley Online LibraryCASWeb of Science®Google Scholar Azeredo, J., Ramos, I., Rodrigues, L., Oliveira, R. Teixeira, J. (1997) Yeast flocculation: a new method for characterising cell surface interactions. Journal of the Institute of Brewing, 103, 359– 61. Wiley Online LibraryCASWeb of Science®Google Scholar Bacallao, R. & Stelzer, E. H. K. (1989) Presentation of biological specimens for observation in a fluorescent confocal microscope and operational principles of confocal fluorescence microscopy. Methods in Cell Biology, 31a, 454– 62. Google Scholar Back, W., Leibhard, M. & Bohak, I. (1992) Flash pasteurisation - membrane filtration. Comparative biological safety. Brauwelt International, 1, 42– 9. Google Scholar Back, W. & Pittner, H. (1993) Kontinuierliche herstellung gesauerter wurze mit half ommibilisierter milschsaurebakterien. Monatsschrift fur Brauwissenschaft, 10, 364– 71. Google Scholar Baldwin, W. W. & Kubitschek, H. E. (1984) Buoyant density variation during the cell cycle of Saccharomyces cerevisiae. Journal of Bacteriology, 158, 701. CASPubMedWeb of Science®Google Scholar Ball, A. (1999) Some thoughts on CiP in the brewing industry. The Brewer, March, 120– 24. Google Scholar Ball, W. J. Jr & Atkinson, D. E. (1975) Adenylate energy charge in Saccharomyces cerevisiae during starvation. Journal of Bacteriology, 121, 975– 82. CASPubMedWeb of Science®Google Scholar Ballou, C. E. (1982) Yeast cell wall and cell surface. In The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression,(eds J. F. Strathern, E. W. Jones and J. R. Broach), pp. 335– 60. Cold Spring Harbor Laboratory, USA. Google Scholar Bamforth, C. W. (1986) Beer flavour stability. The Brewer,February, 48– 51. Google Scholar Bamforth, C. W. (1998) Grain to glass - the basics of malting and brewing. In Beer. Tap into the Art and Science of Brewing, pp. 35– 52. Insight Books, Plenum Press, New York. Google Scholar Bamforth, C. W. (1999) The science and understanding of the flavour stability of beer: a critical assessment. Brauwelt International, 17, 98– 110. Google Scholar Bamforth, C. W., Boulton, C. A., Clarkson, S. P. & Large, P. J. (1988) The effect of oxygen on brewery process performance. Proceedings of the 20th Convention of the Institute of Brewing (Australian & New Zealand Section), Brisbane, 209– 18. Google Scholar Bandas, E. L. and Zakharov, M. (1980) Induction of rho minus mutations in yeast Saccharomyces cerevisiae by ethanol. Mutation Research, 71, 193– 9. CrossrefCASPubMedWeb of Science®Google Scholar Bandlow, W., Strobel, G., Zoglowek, C., Oechsner, U. & Magdolen, V. (1988) Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth. European Journal of Biochemistry, 178, 451– 7. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bank, H. L. (1988) Rapid assessment of islet viability with acridine orange and propidium iodide. In vitro Cellular and Developmental Biology, 24, 266– 73. CrossrefPubMedWeb of Science®Google Scholar Banner, M. J. (1994) Perspectives on conveyor track treatment. Technical Quarterly of the Master Brewers Association of the Americas, 31, 142– 8. Google Scholar Barford, J. P. (1987) The technology of aerobic yeast growth. In Yeast Biotechnology, (eds D. R. Berry, I. Russell and G. G. Stewart), pp. 200– 230. Allen and Unwin, Hemel Hempstead, UK. CrossrefGoogle Scholar Barker, M. G. & Smart, K. A. (1996) Morphological changes associated with cellular ageing of a brewing yeast strain. Journal of the American Society of Brewing Chemists, 54, 121– 6. CrossrefCASWeb of Science®Google Scholar Barker, R. L., Irwin, A. J. & Murray, C. R. (1992) The relationship bewteen fermentation variables and flavour volatiles by direct gas chromatographic injection of beer. Master Brewers Association of the Americas Technical Quarterly, 29, 11– 17. CASGoogle Scholar Barnett, J. A. (1981) The utilisation of disaccharides and some other sugars by yeasts. Advances in Carbohydrate Chemistry and Biochemistry, 39, 347– 404. CrossrefCASGoogle Scholar Barnett, J. A. (1992a) The taxonomy of the genus Saccharomyces Meyen ex Rees: a short review for non-taxonomists. Yeast, 8, 1– 23. Wiley Online LibraryPubMedWeb of Science®Google Scholar Barnett, J. A. (1992b) Some controls on oligosaccharide utilisation by yeasts: the physiological basis of the Kluyver effect. FEMS Microbiology Letters, 100, 371– 8. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Barnett, J. A., Payne, R. W. & Yarrow, D. (1990) Yeasts, Characteristics and Identification, 2nd edition, Cambridge University Press, Cambridge. Google Scholar Barrett, M. A. (1991) Detergents and Sterilents. The Brewer, May, 199– 205. Google Scholar Barros Lopes, M. A., Soden, A., Henschke, P. A. & Langridge, P. (1996) PCR differentiation of commercial yeast strains using intron splice site primers. Applied and Environmental Microbiology, 62, 4514– 20. PubMedWeb of Science®Google Scholar Barshick, S. A., Wolf, D. A. & Vass, A. A. (1999) Differentiation of microorganisms based on pyrolysis ion trap mass spectrometry using chemical ionization. Analytical Chemistry, 71, 633– 41. CrossrefCASPubMedWeb of Science®Google Scholar Barton, S. & Slaughter, J. C. (1992) Amino acids and vicinal diketone concentration during fermentation. Technical Quarterly of the Master Brewers Association of the Americas, 29, 60– 63. CASGoogle Scholar Bassett, D. E. Jr., Boguski, M. S. & Hieter, P. (1996) Yeast genes and human disease. Nature, 379, 589– 90. CrossrefCASPubMedWeb of Science®Google Scholar Bassett, D. E. Jr., Boguski, M. S., Spencer, F. et al. (1997) Genome cross-referencing and XREFdb: implications for the identification and analysis of genes mutated in human disease. Nature Genetics, 15, 339– 44. CrossrefCASPubMedWeb of Science®Google Scholar Bassler, B. L. (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 2, 582– 7. CrossrefCASPubMedWeb of Science®Google Scholar Bathgate, G. N. (1989) Cereals in scotch whisky production. In Cereal Science and Technology (ed G. H. Palmer), pp. 243– 78. Aberdeen University Press, Aberdeen. Google Scholar Bayrock, D. & Ingledew, W. M. (1997) Mechanism of viability loss during fluidized drying of baker's yeast. Food Research International, 30, 417– 25. CrossrefWeb of Science®Google Scholar Beavan, M. J., Charpentier, C. & Rose, A. H. (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition of Saccharomyces cerevisiae NCYC 431. Journal of Industrial Microbiology, 128, 1445– 7. Google Scholar Becker, J. M. & Naider, F. (1977) Peptide transport in yeast: uptake of radioactive trimethionine in Saccharomyces cerevisiae. Archives for Biochemistry and Biophysics, 291, 245– 55. CrossrefWeb of Science®Google Scholar Becker, J. M., Naider, F. & Katchalski, E. (1973) Peptide utilisation in yeast: studies on the methionine and lysine auxotrophs of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 291, 388– 97. CrossrefCASPubMedWeb of Science®Google Scholar Behalova, B. & Vorisek, J. (1988) Increased sterol formation in Saccharomyces cerevisiae. Analysis of cell components and ultrastructure of vacuoles. Folia Microbiologica, 33, 292– 7. CrossrefCASPubMedWeb of Science®Google Scholar Behalova, B., Blahova, M. & Behal, V. (1994) Regulation of sterol biosynthesis in Saccharomyces cerevisiae. Folia Microbiologica, 39, 287– 90. CrossrefCASPubMedWeb of Science®Google Scholar Behrman, C. E. & Larson, J. W. (1987) On-line ultrasonic particle monitoring of brewing operations. Master Brewers Association of the Americas Technical Quarterly, 24, 72– 6. Google Scholar Bell, D. J., Blake, J. D., Prazak, M., Rowell, D. & Wilson, P. N. (1991a) Studies on yeast differentiation using organic acid metabolites part 1. Development of methodology using high performance liquid chromatography. Journal of the Institute of Brewing, 97, 297– 305. Wiley Online LibraryCASWeb of Science®Google Scholar Bell, D. J., Blake, J. D. Prazak, M. Rowell, D. & Wilson, P. N. (1991b) Studies on yeast differentiation using organic acid metabolites part 2. Studies on the organic acid metabolites produced by yeasts grown on glucose. Journal of the Institute of Brewing, 97, 307– 15. Wiley Online LibraryCASWeb of Science®Google Scholar Bell, D. J., Blake, J. D., Prazak, M. & Wilson, P. N. (1991c) Studies on yeast differentiation using organic acid metabolites part 3. Studies on the metabolites produced by yeasts grown on a selection of single carbon substrates. Journal of the Institute of Brewing, 97 317– 22. Wiley Online LibraryCASWeb of Science®Google Scholar Bell, W. (1995) Blessed is the brewing industry. Brewers' Guardian, June, 18. Google Scholar Bendiak, D. (1994) Quantification of the Helm's flocculation test. Journal of the American Society of Brewing Chemists, 52, 120– 22. CrossrefCASWeb of Science®Google Scholar Bendiak, D. (1996) Yeast flocculation by absorbance method. Journal of the American Society of Brewing Chemists, 54, 245– 8. Web of Science®Google Scholar Benito, B. & Lagunas, R. (1992) The low affinity component of Saccharomyces cerevisiae maltose transport is an artefact. Journal of Bacteriology, 174, 3065– 9. CrossrefCASPubMedWeb of Science®Google Scholar Berminham-MaDonogh, O., Gralla, E. B. & Valentine, J. S. (1988) The copper-zinc dismutase gene of Saccharomyces cerevisiae: cloning, sequencing and biological activity. Proceedings of the National Academy of Sciences USA, 85, 4789– 93. CrossrefWeb of Science®Google Scholar Berndt, J., Boll, M., Lowel, M. & Gaumert, R. (1973) Regulation of sterol biosynthesis in yeast: induction of 3-hydroxymethyl-3-glutaryl-coenzyme A to squalene. Biochemical and Biophysical Research Communications, 51, 843– 51. CrossrefCASPubMedWeb of Science®Google Scholar Berny, J.-F. & Hennebert, G. L. (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia, 83, 805– 15. CrossrefCASWeb of Science®Google Scholar Berry, D. R. & Watson, D. C. (1987) Production of organoleptic compounds. In Yeast Biotechnology (eds D. R. Berry, I. Russell and G. G. Stewart), pp. 345– 68. Allen and Unwin, London. CrossrefGoogle Scholar Bezenger, M. C. & Navarro, J. M. (1988) Alcoholic fermentation model accounting for initial nitrogen influence. Biotechnology and Bioengineering, 31, 747– 9. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Bishop, L. R. (1938) Experiments on top fermentation. Journal of the Institute of Brewing, 44, 69– 73. Wiley Online LibraryCASGoogle Scholar Bishop, L. R. (1970) A system of continuous fermentation. Journal of the Institute of Brewing, 76, 172– 81. Wiley Online LibraryWeb of Science®Google Scholar Bisson, L. F. & Fraenkel, D. G. (1983a) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the USA, 80, 1730– 34. CrossrefCASPubMedWeb of Science®Google Scholar Bisson, L. F. & Fraenkel, D. G. (1983b) Transport of 6-deoxyglucose in Saccharomyces cerevisiae. Journal of Bacteriology, 155, 995– 1000. CASPubMedWeb of Science®Google Scholar Bisson, L. F. & Fraenkel, D. G. (1984) Expression of kinase dependent glucose uptake in Saccharomyces cerevisiae. Journal of Bacteriology, 159, 1013– 17. CASPubMedWeb of Science®Google Scholar Blackwell, K. J., Singleton, I. & Tobin, J. M. (1995) Metal cation uptake by yeast: a review. Applied and Microbial Biotechnology, 43, 579– 84. CrossrefCASPubMedWeb of Science®Google Scholar Blazquez, M. A., Lagunas, R., Gancedo, C. & Gancedo, J. M. (1993) Trehalose 6-phosphate, regulator of glycolysis by inhibition of hexokinases. FEBS Letters, 329, 51– 4. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Blomberg, A. & Adler, L. (1989) Roles of glycerol and glycerol 3-phosphate dehydrogenase (NAD) in acquired osmotolerance of Saccharomyces cerevisiae. Journal of Bacteriology, 171, 1087– 92. CrossrefCASPubMedWeb of Science®Google Scholar Blomqvist, K., Suihko, M.-L., Knowles, J. and Penttila, M. (1991) Chromosomal integration and expression of two bacterial alpha-acetolactate decarboxylase genes in brewer's yeast. Applied and Environmental Microbiology, 57, 2796– 2803. CASPubMedWeb of Science®Google Scholar Bode, H.-P., Dumschat, M., Garoti, S. and Fuhrmann, G. F. (1995) Iron sequestration by the yeast vacuole. European Journal of Biochemistry, 228, 337– 42. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Boeira, L. S., Bryce, J. H., St" @default.
- W4213012169 created "2022-02-24" @default.
- W4213012169 date "2006-03-10" @default.
- W4213012169 modified "2023-09-26" @default.
- W4213012169 title "References" @default.
- W4213012169 cites W1005083793 @default.
- W4213012169 cites W1031815367 @default.
- W4213012169 cites W107130228 @default.
- W4213012169 cites W109898432 @default.
- W4213012169 cites W1121950425 @default.
- W4213012169 cites W1178064118 @default.
- W4213012169 cites W1270128503 @default.
- W4213012169 cites W133994192 @default.
- W4213012169 cites W1417670601 @default.
- W4213012169 cites W1440917696 @default.
- W4213012169 cites W1446731708 @default.
- W4213012169 cites W1450966855 @default.
- W4213012169 cites W1467406035 @default.
- W4213012169 cites W148549279 @default.
- W4213012169 cites W1487783106 @default.
- W4213012169 cites W1488930211 @default.
- W4213012169 cites W1494276851 @default.
- W4213012169 cites W1494280948 @default.
- W4213012169 cites W1495801380 @default.
- W4213012169 cites W1503369988 @default.
- W4213012169 cites W1511651671 @default.
- W4213012169 cites W1519084876 @default.
- W4213012169 cites W1525575010 @default.
- W4213012169 cites W1526970769 @default.
- W4213012169 cites W1532356924 @default.
- W4213012169 cites W1536128494 @default.
- W4213012169 cites W1537892709 @default.
- W4213012169 cites W1542410340 @default.
- W4213012169 cites W1549160304 @default.
- W4213012169 cites W1549932479 @default.
- W4213012169 cites W155088835 @default.
- W4213012169 cites W1551361419 @default.
- W4213012169 cites W1551627011 @default.
- W4213012169 cites W155220854 @default.
- W4213012169 cites W1553509744 @default.
- W4213012169 cites W1559652934 @default.
- W4213012169 cites W1560448629 @default.
- W4213012169 cites W1561188835 @default.
- W4213012169 cites W1570980717 @default.
- W4213012169 cites W1578038611 @default.
- W4213012169 cites W1590458072 @default.
- W4213012169 cites W1592179418 @default.
- W4213012169 cites W1593228991 @default.
- W4213012169 cites W16001688 @default.
- W4213012169 cites W1607818182 @default.
- W4213012169 cites W1615920165 @default.
- W4213012169 cites W1631944702 @default.
- W4213012169 cites W163996792 @default.
- W4213012169 cites W1641544182 @default.
- W4213012169 cites W1651038240 @default.
- W4213012169 cites W1716011588 @default.
- W4213012169 cites W175388135 @default.
- W4213012169 cites W1766997325 @default.
- W4213012169 cites W1767936564 @default.
- W4213012169 cites W1770760687 @default.
- W4213012169 cites W1778882962 @default.
- W4213012169 cites W1819508662 @default.
- W4213012169 cites W182817801 @default.
- W4213012169 cites W1837371624 @default.
- W4213012169 cites W1845736521 @default.
- W4213012169 cites W1856994869 @default.
- W4213012169 cites W1883080123 @default.
- W4213012169 cites W1888620137 @default.
- W4213012169 cites W189513228 @default.
- W4213012169 cites W1896630930 @default.
- W4213012169 cites W1904911103 @default.
- W4213012169 cites W190859596 @default.
- W4213012169 cites W1916002325 @default.
- W4213012169 cites W1923876004 @default.
- W4213012169 cites W1924443091 @default.
- W4213012169 cites W19313510 @default.
- W4213012169 cites W1935398115 @default.
- W4213012169 cites W1937110019 @default.
- W4213012169 cites W1960813452 @default.
- W4213012169 cites W1961551106 @default.
- W4213012169 cites W1963578989 @default.
- W4213012169 cites W1964114050 @default.
- W4213012169 cites W1964999691 @default.
- W4213012169 cites W1965252891 @default.
- W4213012169 cites W1965531548 @default.
- W4213012169 cites W1965639767 @default.
- W4213012169 cites W1965946303 @default.
- W4213012169 cites W1966580332 @default.
- W4213012169 cites W1966705227 @default.
- W4213012169 cites W1967435302 @default.
- W4213012169 cites W1967445945 @default.
- W4213012169 cites W1967523944 @default.
- W4213012169 cites W1967588828 @default.
- W4213012169 cites W1967652094 @default.
- W4213012169 cites W1967693232 @default.
- W4213012169 cites W1968463000 @default.
- W4213012169 cites W1969022698 @default.
- W4213012169 cites W1969314406 @default.