Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213036607> ?p ?o ?g. }
- W4213036607 endingPage "637" @default.
- W4213036607 startingPage "627" @default.
- W4213036607 abstract "Abstract Advances in biologging techniques and the availability of high‐resolution fisheries data have improved our ability to understand the interactions between seabirds and fisheries and to evaluate mortality risk due to bycatch. However, it remains unclear whether movement patterns and behaviour differ between birds foraging naturally or scavenging behind vessels and whether this could be diagnostic of fisheries interactions. We deployed novel loggers that record the GPS position of birds at sea and scan the surroundings to detect radar transmissions from vessels and immersion (activity) loggers on wandering albatrosses Diomedea exulans from South Georgia. We matched these data to remotely sensed fishing vessel positions and used a combination of hidden Markov and random forest models to investigate whether it was possible to detect a characteristic signature from the seabird tracking and activity data that would indicate fine‐scale vessel overlap and interactions. Including immersion data in our hidden Markov models allowed two distinct foraging behaviours to be identified, both indicative of Area Restricted Search (ARS) but with or without landing behaviour (likely prey capture attempts) that would not be detectable with location data alone. Birds approached vessels during all behavioural states, and there was no clear pattern associated with this type of scavenging behaviour. The random forest models had very low sensitivity, partly because foraging events at vessels occurred very rarely, and did not contain any diagnostic movement or activity pattern that was distinct from natural behaviours away from vessels. Thus, we were unable to predict accurately whether foraging bouts occurred in the vicinity of a fishing vessel, or naturally, based on behaviour alone. Our method provides a coherent and generalizable framework to segment trips using auxiliary biologging (immersion) data and to refine the classification of foraging strategies of seabirds. These results nevertheless underline the value of using radar detectors that detect vessel proximity or remotely sensed vessel locations for a better understanding of seabird–fishery interactions." @default.
- W4213036607 created "2022-02-24" @default.
- W4213036607 creator A5000994178 @default.
- W4213036607 creator A5053349223 @default.
- W4213036607 creator A5059146721 @default.
- W4213036607 creator A5069887125 @default.
- W4213036607 creator A5073802104 @default.
- W4213036607 creator A5080755723 @default.
- W4213036607 creator A5091301621 @default.
- W4213036607 creator A5091405564 @default.
- W4213036607 date "2022-02-21" @default.
- W4213036607 modified "2023-10-18" @default.
- W4213036607 title "Integrating immersion with <scp>GPS</scp> data improves behavioural classification for wandering albatrosses and shows scavenging behind fishing vessels mirrors natural foraging" @default.
- W4213036607 cites W1880840522 @default.
- W4213036607 cites W1964248716 @default.
- W4213036607 cites W1968914203 @default.
- W4213036607 cites W1977114806 @default.
- W4213036607 cites W1981278556 @default.
- W4213036607 cites W1983335943 @default.
- W4213036607 cites W1992371122 @default.
- W4213036607 cites W2004153468 @default.
- W4213036607 cites W2009082712 @default.
- W4213036607 cites W2017665047 @default.
- W4213036607 cites W2017839094 @default.
- W4213036607 cites W2027594569 @default.
- W4213036607 cites W2056184530 @default.
- W4213036607 cites W2066574710 @default.
- W4213036607 cites W2068664017 @default.
- W4213036607 cites W2081633416 @default.
- W4213036607 cites W2089302572 @default.
- W4213036607 cites W2099220780 @default.
- W4213036607 cites W2101097875 @default.
- W4213036607 cites W2118187329 @default.
- W4213036607 cites W2120153268 @default.
- W4213036607 cites W2122880681 @default.
- W4213036607 cites W2123761945 @default.
- W4213036607 cites W2123998733 @default.
- W4213036607 cites W2132934625 @default.
- W4213036607 cites W2143481518 @default.
- W4213036607 cites W2147445041 @default.
- W4213036607 cites W2157704734 @default.
- W4213036607 cites W2166465566 @default.
- W4213036607 cites W2173412606 @default.
- W4213036607 cites W2326792152 @default.
- W4213036607 cites W2331331436 @default.
- W4213036607 cites W2483513376 @default.
- W4213036607 cites W2507851337 @default.
- W4213036607 cites W2551070085 @default.
- W4213036607 cites W2570750126 @default.
- W4213036607 cites W2622604300 @default.
- W4213036607 cites W2736451544 @default.
- W4213036607 cites W2768257711 @default.
- W4213036607 cites W2788078249 @default.
- W4213036607 cites W2789686880 @default.
- W4213036607 cites W2796384199 @default.
- W4213036607 cites W2902308871 @default.
- W4213036607 cites W2914806504 @default.
- W4213036607 cites W2917105194 @default.
- W4213036607 cites W2945814767 @default.
- W4213036607 cites W2966203395 @default.
- W4213036607 cites W2976206429 @default.
- W4213036607 cites W2992038085 @default.
- W4213036607 cites W3003824775 @default.
- W4213036607 cites W3004645575 @default.
- W4213036607 cites W3016664942 @default.
- W4213036607 cites W3031994147 @default.
- W4213036607 cites W3036057254 @default.
- W4213036607 cites W3128377041 @default.
- W4213036607 cites W3128979697 @default.
- W4213036607 cites W3132854781 @default.
- W4213036607 cites W3163019636 @default.
- W4213036607 cites W4229500199 @default.
- W4213036607 doi "https://doi.org/10.1111/acv.12768" @default.
- W4213036607 hasPublicationYear "2022" @default.
- W4213036607 type Work @default.
- W4213036607 citedByCount "3" @default.
- W4213036607 countsByYear W42130366072022 @default.
- W4213036607 countsByYear W42130366072023 @default.
- W4213036607 crossrefType "journal-article" @default.
- W4213036607 hasAuthorship W4213036607A5000994178 @default.
- W4213036607 hasAuthorship W4213036607A5053349223 @default.
- W4213036607 hasAuthorship W4213036607A5059146721 @default.
- W4213036607 hasAuthorship W4213036607A5069887125 @default.
- W4213036607 hasAuthorship W4213036607A5073802104 @default.
- W4213036607 hasAuthorship W4213036607A5080755723 @default.
- W4213036607 hasAuthorship W4213036607A5091301621 @default.
- W4213036607 hasAuthorship W4213036607A5091405564 @default.
- W4213036607 hasBestOaLocation W42130366071 @default.
- W4213036607 hasConcept C149340888 @default.
- W4213036607 hasConcept C165287380 @default.
- W4213036607 hasConcept C185933670 @default.
- W4213036607 hasConcept C188382862 @default.
- W4213036607 hasConcept C18903297 @default.
- W4213036607 hasConcept C205649164 @default.
- W4213036607 hasConcept C24518262 @default.
- W4213036607 hasConcept C2777981335 @default.
- W4213036607 hasConcept C505870484 @default.
- W4213036607 hasConcept C514101110 @default.