Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213043145> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4213043145 endingPage "1231" @default.
- W4213043145 startingPage "1230" @default.
- W4213043145 abstract "Journal of Magnetic Resonance ImagingVolume 56, Issue 4 p. 1230-1231 Editorial Editorial for “Anatomical Partition-Based Deep Learning: An Automatic Nasopharyngeal Magnetic Resonance Image Recognition Scheme” Eric K. van Staalduinen DO, Corresponding Author Eric K. van Staalduinen DO [email protected] orcid.org/0000-0001-9786-2712 Department of Radiology, Stanford University School of Medicine, Stanford, California, USASearch for more papers by this author Eric K. van Staalduinen DO, Corresponding Author Eric K. van Staalduinen DO [email protected] orcid.org/0000-0001-9786-2712 Department of Radiology, Stanford University School of Medicine, Stanford, California, USASearch for more papers by this author First published: 15 February 2022 https://doi.org/10.1002/jmri.28119 Level of Evidence: 5 Technical Efficacy Stage: 3 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL No abstract is available for this article. References 1Recht MP, Zbontar J, Sodickson DK, et al. Using deep learning to accelerate knee MRI at 3 T: Results of an interchangeability study. Am J Roentgenol 2020; 215(6): 1421- 1429. https://doi.org/10.2214/AJR.20.23313 2Chen DYT, Ishii Y, Fan AP, et al. Predicting PET cerebrovascular reserve with deep learning by using baseline MRI: A pilot investigation of a drug-free brain stress test. Radiology 2020; 296(3): 627- 637. https://doi.org/10.1148/radiol.2020192793 3Chang PD. Fully convolutional deep residual neural networks for brain tumor segmentation. In: A Crimi, B Menze, O Maier, M Reyes, S Winzeck, H Handels, editors. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: Cham: Springer International Publishing; 2016. p 108- 118. https://doi.org/10.1007/978-3-319-55524-9_11 4Rauschecker AM, Rudie JD, Xie L, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 2020; 295(3): 626- 637. https://doi.org/10.1148/radiol.2020190283 5Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep learning in neuroradiology. Am J Neuroradiol 2018; 39(10): 1776- 1784. https://doi.org/10.3174/ajnr.A5543 6Li S, Hua HL, Li F, et al. Anatomical partition-based deep learning: An automatic nasopharyngeal MRI recognition scheme. J Magn Reson Imaging 2022; 56(4): 1220- 1229. 7Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015; 34(10): 1993- 2024. https://doi.org/10.1109/TMI.2014.2377694 8Harnsberger HR, Osborn AG. Differential diagnosis of head and neck lesions based on their space of origin. 1. The suprahyoid part of the neck. Am J Roentgenol 1991; 157(1): 147- 154. https://doi.org/10.2214/ajr.157.1.2048510 9Smoker WR, Harnsberger HR. Differential diagnosis of head and neck lesions based on their space of origin. 2. The infrahyoid portion of the neck. Am J Roentgenol 1991; 157(1): 155- 159. https://doi.org/10.2214/ajr.157.1.2048511 Volume56, Issue4October 2022Pages 1230-1231 ReferencesRelatedInformation" @default.
- W4213043145 created "2022-02-24" @default.
- W4213043145 creator A5074681177 @default.
- W4213043145 date "2022-02-15" @default.
- W4213043145 modified "2023-09-26" @default.
- W4213043145 title "Editorial for “Anatomical <scp>Partition‐Based</scp> Deep Learning: An Automatic Nasopharyngeal Magnetic Resonance Image Recognition Scheme”" @default.
- W4213043145 cites W1641498739 @default.
- W4213043145 cites W1986525549 @default.
- W4213043145 cites W2605717159 @default.
- W4213043145 cites W2786907498 @default.
- W4213043145 cites W3014301887 @default.
- W4213043145 cites W3041796785 @default.
- W4213043145 cites W3043246085 @default.
- W4213043145 cites W4213064139 @default.
- W4213043145 cites W4247981075 @default.
- W4213043145 doi "https://doi.org/10.1002/jmri.28119" @default.
- W4213043145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35167148" @default.
- W4213043145 hasPublicationYear "2022" @default.
- W4213043145 type Work @default.
- W4213043145 citedByCount "0" @default.
- W4213043145 crossrefType "journal-article" @default.
- W4213043145 hasAuthorship W4213043145A5074681177 @default.
- W4213043145 hasConcept C108583219 @default.
- W4213043145 hasConcept C126838900 @default.
- W4213043145 hasConcept C143409427 @default.
- W4213043145 hasConcept C154945302 @default.
- W4213043145 hasConcept C161191863 @default.
- W4213043145 hasConcept C23123220 @default.
- W4213043145 hasConcept C2778805511 @default.
- W4213043145 hasConcept C41008148 @default.
- W4213043145 hasConcept C71924100 @default.
- W4213043145 hasConceptScore W4213043145C108583219 @default.
- W4213043145 hasConceptScore W4213043145C126838900 @default.
- W4213043145 hasConceptScore W4213043145C143409427 @default.
- W4213043145 hasConceptScore W4213043145C154945302 @default.
- W4213043145 hasConceptScore W4213043145C161191863 @default.
- W4213043145 hasConceptScore W4213043145C23123220 @default.
- W4213043145 hasConceptScore W4213043145C2778805511 @default.
- W4213043145 hasConceptScore W4213043145C41008148 @default.
- W4213043145 hasConceptScore W4213043145C71924100 @default.
- W4213043145 hasIssue "4" @default.
- W4213043145 hasLocation W42130431451 @default.
- W4213043145 hasLocation W42130431452 @default.
- W4213043145 hasOpenAccess W4213043145 @default.
- W4213043145 hasPrimaryLocation W42130431451 @default.
- W4213043145 hasRelatedWork W2731899572 @default.
- W4213043145 hasRelatedWork W2748952813 @default.
- W4213043145 hasRelatedWork W2899084033 @default.
- W4213043145 hasRelatedWork W2939353110 @default.
- W4213043145 hasRelatedWork W3009238340 @default.
- W4213043145 hasRelatedWork W3215138031 @default.
- W4213043145 hasRelatedWork W4312962853 @default.
- W4213043145 hasRelatedWork W4321369474 @default.
- W4213043145 hasRelatedWork W4327774331 @default.
- W4213043145 hasRelatedWork W4360585206 @default.
- W4213043145 hasVolume "56" @default.
- W4213043145 isParatext "false" @default.
- W4213043145 isRetracted "false" @default.
- W4213043145 workType "article" @default.