Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213043337> ?p ?o ?g. }
- W4213043337 abstract "Prediction of antimicrobial resistance based on whole-genome sequencing data has attracted greater attention due to its rapidity and convenience. Numerous machine learning-based studies have used genetic variants to predict drug resistance in Mycobacterium tuberculosis (MTB), assuming that variants are homogeneous, and most of these studies, however, have ignored the essential correlation between variants and corresponding genes when encoding variants, and used a limited number of variants as prediction input. In this study, taking advantage of genome-wide variants for drug-resistance prediction and inspired by natural language processing, we summarize drug resistance prediction into document classification, in which variants are considered as words, mutated genes in an isolate as sentences, and an isolate as a document. We propose a novel hierarchical attentive neural network model (HANN) that helps discover drug resistance-related genes and variants and acquire more interpretable biological results. It captures the interaction among variants in a mutated gene as well as among mutated genes in an isolate. Our results show that for the four first-line drugs of isoniazid (INH), rifampicin (RIF), ethambutol (EMB) and pyrazinamide (PZA), the HANN achieves the optimal area under the ROC curve of 97.90, 99.05, 96.44 and 95.14% and the optimal sensitivity of 94.63, 96.31, 92.56 and 87.05%, respectively. In addition, without any domain knowledge, the model identifies drug resistance-related genes and variants consistent with those confirmed by previous studies, and more importantly, it discovers one more potential drug-resistance-related gene." @default.
- W4213043337 created "2022-02-24" @default.
- W4213043337 creator A5009401109 @default.
- W4213043337 creator A5009571807 @default.
- W4213043337 creator A5016579528 @default.
- W4213043337 creator A5029301165 @default.
- W4213043337 creator A5037989560 @default.
- W4213043337 creator A5039713541 @default.
- W4213043337 creator A5050784237 @default.
- W4213043337 creator A5076055681 @default.
- W4213043337 creator A5090623663 @default.
- W4213043337 date "2022-03-24" @default.
- W4213043337 modified "2023-10-17" @default.
- W4213043337 title "Drug resistance prediction and resistance genes identification in <i>Mycobacterium tuberculosis</i> based on a hierarchical attentive neural network utilizing genome-wide variants" @default.
- W4213043337 cites W1863711781 @default.
- W4213043337 cites W1917166617 @default.
- W4213043337 cites W1994763729 @default.
- W4213043337 cites W2078676106 @default.
- W4213043337 cites W2106578986 @default.
- W4213043337 cites W2108234281 @default.
- W4213043337 cites W2119180969 @default.
- W4213043337 cites W2137570369 @default.
- W4213043337 cites W2140934532 @default.
- W4213043337 cites W2149992227 @default.
- W4213043337 cites W2175184680 @default.
- W4213043337 cites W2222642144 @default.
- W4213043337 cites W2576072275 @default.
- W4213043337 cites W2771835478 @default.
- W4213043337 cites W2901155787 @default.
- W4213043337 cites W2902271181 @default.
- W4213043337 cites W2928080709 @default.
- W4213043337 cites W2943077106 @default.
- W4213043337 cites W2943862789 @default.
- W4213043337 cites W2951912016 @default.
- W4213043337 cites W2952463453 @default.
- W4213043337 cites W2971492877 @default.
- W4213043337 cites W2998357136 @default.
- W4213043337 cites W3011574394 @default.
- W4213043337 cites W3017681976 @default.
- W4213043337 cites W3039317077 @default.
- W4213043337 cites W3082050593 @default.
- W4213043337 cites W3088682948 @default.
- W4213043337 cites W3129125493 @default.
- W4213043337 cites W3152586663 @default.
- W4213043337 cites W3177828909 @default.
- W4213043337 cites W3195766468 @default.
- W4213043337 cites W3216520818 @default.
- W4213043337 doi "https://doi.org/10.1093/bib/bbac041" @default.
- W4213043337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35325021" @default.
- W4213043337 hasPublicationYear "2022" @default.
- W4213043337 type Work @default.
- W4213043337 citedByCount "4" @default.
- W4213043337 countsByYear W42130433372022 @default.
- W4213043337 countsByYear W42130433372023 @default.
- W4213043337 crossrefType "journal-article" @default.
- W4213043337 hasAuthorship W4213043337A5009401109 @default.
- W4213043337 hasAuthorship W4213043337A5009571807 @default.
- W4213043337 hasAuthorship W4213043337A5016579528 @default.
- W4213043337 hasAuthorship W4213043337A5029301165 @default.
- W4213043337 hasAuthorship W4213043337A5037989560 @default.
- W4213043337 hasAuthorship W4213043337A5039713541 @default.
- W4213043337 hasAuthorship W4213043337A5050784237 @default.
- W4213043337 hasAuthorship W4213043337A5076055681 @default.
- W4213043337 hasAuthorship W4213043337A5090623663 @default.
- W4213043337 hasConcept C104317684 @default.
- W4213043337 hasConcept C114851261 @default.
- W4213043337 hasConcept C119857082 @default.
- W4213043337 hasConcept C141231307 @default.
- W4213043337 hasConcept C142724271 @default.
- W4213043337 hasConcept C2776228421 @default.
- W4213043337 hasConcept C2777975735 @default.
- W4213043337 hasConcept C2778607973 @default.
- W4213043337 hasConcept C2780459521 @default.
- W4213043337 hasConcept C2781067378 @default.
- W4213043337 hasConcept C2781069245 @default.
- W4213043337 hasConcept C41008148 @default.
- W4213043337 hasConcept C501593827 @default.
- W4213043337 hasConcept C54355233 @default.
- W4213043337 hasConcept C70721500 @default.
- W4213043337 hasConcept C71924100 @default.
- W4213043337 hasConcept C86803240 @default.
- W4213043337 hasConceptScore W4213043337C104317684 @default.
- W4213043337 hasConceptScore W4213043337C114851261 @default.
- W4213043337 hasConceptScore W4213043337C119857082 @default.
- W4213043337 hasConceptScore W4213043337C141231307 @default.
- W4213043337 hasConceptScore W4213043337C142724271 @default.
- W4213043337 hasConceptScore W4213043337C2776228421 @default.
- W4213043337 hasConceptScore W4213043337C2777975735 @default.
- W4213043337 hasConceptScore W4213043337C2778607973 @default.
- W4213043337 hasConceptScore W4213043337C2780459521 @default.
- W4213043337 hasConceptScore W4213043337C2781067378 @default.
- W4213043337 hasConceptScore W4213043337C2781069245 @default.
- W4213043337 hasConceptScore W4213043337C41008148 @default.
- W4213043337 hasConceptScore W4213043337C501593827 @default.
- W4213043337 hasConceptScore W4213043337C54355233 @default.
- W4213043337 hasConceptScore W4213043337C70721500 @default.
- W4213043337 hasConceptScore W4213043337C71924100 @default.
- W4213043337 hasConceptScore W4213043337C86803240 @default.
- W4213043337 hasFunder F4320335787 @default.
- W4213043337 hasIssue "3" @default.