Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213071600> ?p ?o ?g. }
- W4213071600 endingPage "3694" @default.
- W4213071600 startingPage "3684" @default.
- W4213071600 abstract "Machine learning and signal processing on the edge are poised to influence our everyday lives with devices that will learn and infer from data generated by smart sensors and other devices for the Internet of Things. The next leap toward ubiquitous electronics requires increased energy efficiency of processors for specialized data-driven applications. Here, we show how an in-memory processor fabricated using a two-dimensional materials platform can potentially outperform its silicon counterparts in both standard and nontraditional Von Neumann architectures for artificial neural networks. We have fabricated a flash memory array with a two-dimensional channel using wafer-scale MoS2. Simulations and experiments show that the device can be scaled down to sub-micrometer channel length without any significant impact on its memory performance and that in simulation a reasonable memory window still exists at sub-50 nm channel lengths. Each device conductance in our circuit can be tuned with a 4-bit precision by closed-loop programming. Using our physical circuit, we demonstrate seven-segment digit display classification with a 91.5% accuracy with training performed ex situ and transferred from a host. Further simulations project that at a system level, the large memory arrays can perform AlexNet classification with an upper limit of 50 000 TOpS/W, potentially outperforming neural network integrated circuits based on double-poly CMOS technology." @default.
- W4213071600 created "2022-02-24" @default.
- W4213071600 creator A5015031073 @default.
- W4213071600 creator A5017777141 @default.
- W4213071600 creator A5026176713 @default.
- W4213071600 creator A5037350732 @default.
- W4213071600 creator A5044411205 @default.
- W4213071600 creator A5056704824 @default.
- W4213071600 creator A5070300381 @default.
- W4213071600 creator A5072810519 @default.
- W4213071600 creator A5076267890 @default.
- W4213071600 creator A5079097534 @default.
- W4213071600 creator A5088596296 @default.
- W4213071600 date "2022-02-15" @default.
- W4213071600 modified "2023-10-14" @default.
- W4213071600 title "Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS<sub>2</sub>" @default.
- W4213071600 cites W1969314684 @default.
- W4213071600 cites W1977042446 @default.
- W4213071600 cites W2021994802 @default.
- W4213071600 cites W2083780116 @default.
- W4213071600 cites W2100846455 @default.
- W4213071600 cites W2119112357 @default.
- W4213071600 cites W2122246231 @default.
- W4213071600 cites W2135933491 @default.
- W4213071600 cites W2136255342 @default.
- W4213071600 cites W2143612262 @default.
- W4213071600 cites W2476616835 @default.
- W4213071600 cites W2498392428 @default.
- W4213071600 cites W2528423716 @default.
- W4213071600 cites W2612060048 @default.
- W4213071600 cites W2618530766 @default.
- W4213071600 cites W2726455467 @default.
- W4213071600 cites W2735754951 @default.
- W4213071600 cites W2763430231 @default.
- W4213071600 cites W2775771159 @default.
- W4213071600 cites W2785141883 @default.
- W4213071600 cites W2796625795 @default.
- W4213071600 cites W2830509727 @default.
- W4213071600 cites W2889448077 @default.
- W4213071600 cites W2915404303 @default.
- W4213071600 cites W2922168646 @default.
- W4213071600 cites W2923537029 @default.
- W4213071600 cites W2971295144 @default.
- W4213071600 cites W2983160443 @default.
- W4213071600 cites W3002375248 @default.
- W4213071600 cites W3003821665 @default.
- W4213071600 cites W3005744802 @default.
- W4213071600 cites W3009994855 @default.
- W4213071600 cites W3013080934 @default.
- W4213071600 cites W3033902939 @default.
- W4213071600 cites W3044994059 @default.
- W4213071600 cites W3081188678 @default.
- W4213071600 cites W3095657097 @default.
- W4213071600 cites W3097323184 @default.
- W4213071600 cites W3098480967 @default.
- W4213071600 cites W3099377273 @default.
- W4213071600 cites W3103441541 @default.
- W4213071600 cites W3110294643 @default.
- W4213071600 cites W3118277711 @default.
- W4213071600 doi "https://doi.org/10.1021/acsnano.1c07065" @default.
- W4213071600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35167265" @default.
- W4213071600 hasPublicationYear "2022" @default.
- W4213071600 type Work @default.
- W4213071600 citedByCount "11" @default.
- W4213071600 countsByYear W42130716002022 @default.
- W4213071600 countsByYear W42130716002023 @default.
- W4213071600 crossrefType "journal-article" @default.
- W4213071600 hasAuthorship W4213071600A5015031073 @default.
- W4213071600 hasAuthorship W4213071600A5017777141 @default.
- W4213071600 hasAuthorship W4213071600A5026176713 @default.
- W4213071600 hasAuthorship W4213071600A5037350732 @default.
- W4213071600 hasAuthorship W4213071600A5044411205 @default.
- W4213071600 hasAuthorship W4213071600A5056704824 @default.
- W4213071600 hasAuthorship W4213071600A5070300381 @default.
- W4213071600 hasAuthorship W4213071600A5072810519 @default.
- W4213071600 hasAuthorship W4213071600A5076267890 @default.
- W4213071600 hasAuthorship W4213071600A5079097534 @default.
- W4213071600 hasAuthorship W4213071600A5088596296 @default.
- W4213071600 hasBestOaLocation W42130716002 @default.
- W4213071600 hasConcept C108583219 @default.
- W4213071600 hasConcept C111919701 @default.
- W4213071600 hasConcept C119599485 @default.
- W4213071600 hasConcept C127413603 @default.
- W4213071600 hasConcept C134146338 @default.
- W4213071600 hasConcept C150072547 @default.
- W4213071600 hasConcept C151927369 @default.
- W4213071600 hasConcept C154945302 @default.
- W4213071600 hasConcept C165801399 @default.
- W4213071600 hasConcept C182019814 @default.
- W4213071600 hasConcept C192562407 @default.
- W4213071600 hasConcept C24326235 @default.
- W4213071600 hasConcept C2776531357 @default.
- W4213071600 hasConcept C41008148 @default.
- W4213071600 hasConcept C46362747 @default.
- W4213071600 hasConcept C49040817 @default.
- W4213071600 hasConcept C50644808 @default.
- W4213071600 hasConcept C60908668 @default.
- W4213071600 hasConcept C80469333 @default.