Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213072029> ?p ?o ?g. }
- W4213072029 endingPage "2143" @default.
- W4213072029 startingPage "2135" @default.
- W4213072029 abstract "Abstract Motivation RNA-binding proteins (RBPs) play crucial roles in post-transcriptional regulation. Accurate identification of RBPs helps to understand gene expression, regulation, etc. In recent years, some computational methods were proposed to identify RBPs. However, these methods fail to accurately identify RBPs from some specific species with limited data, such as bacteria. Results In this study, we introduce a computational method called PreRBP-TL for identifying species-specific RBPs based on transfer learning. The weights of the prediction model were initialized by pretraining with the large general RBP dataset and then fine-tuned with the small species-specific RPB dataset by using transfer learning. The experimental results show that the PreRBP-TL achieves better performance for identifying the species-specific RBPs from Human, Arabidopsis, Escherichia coli and Salmonella, outperforming eight state-of-the-art computational methods. It is anticipated PreRBP-TL will become a useful method for identifying RBPs. Availability and implementation For the convenience of researchers to identify RBPs, the web server of PreRBP-TL was established, freely available at http://bliulab.net/PreRBP-TL. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W4213072029 created "2022-02-24" @default.
- W4213072029 creator A5011129309 @default.
- W4213072029 creator A5033077540 @default.
- W4213072029 creator A5039611523 @default.
- W4213072029 creator A5072624830 @default.
- W4213072029 date "2022-02-17" @default.
- W4213072029 modified "2023-10-03" @default.
- W4213072029 title "PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning" @default.
- W4213072029 cites W1019830208 @default.
- W4213072029 cites W1593880960 @default.
- W4213072029 cites W1892469892 @default.
- W4213072029 cites W1984574291 @default.
- W4213072029 cites W1997535872 @default.
- W4213072029 cites W2033253992 @default.
- W4213072029 cites W2046792302 @default.
- W4213072029 cites W2055043387 @default.
- W4213072029 cites W2062296203 @default.
- W4213072029 cites W2067657160 @default.
- W4213072029 cites W2096387274 @default.
- W4213072029 cites W2103017472 @default.
- W4213072029 cites W2125800162 @default.
- W4213072029 cites W2130479394 @default.
- W4213072029 cites W2143210482 @default.
- W4213072029 cites W2148853951 @default.
- W4213072029 cites W2156125289 @default.
- W4213072029 cites W2158266834 @default.
- W4213072029 cites W2158714788 @default.
- W4213072029 cites W2182726182 @default.
- W4213072029 cites W2253429366 @default.
- W4213072029 cites W2336509392 @default.
- W4213072029 cites W2480300184 @default.
- W4213072029 cites W2521782266 @default.
- W4213072029 cites W2528142478 @default.
- W4213072029 cites W2582176104 @default.
- W4213072029 cites W2748005921 @default.
- W4213072029 cites W2766234610 @default.
- W4213072029 cites W2777094228 @default.
- W4213072029 cites W2781945186 @default.
- W4213072029 cites W2782148675 @default.
- W4213072029 cites W2785329615 @default.
- W4213072029 cites W2850098960 @default.
- W4213072029 cites W2889498145 @default.
- W4213072029 cites W2914272550 @default.
- W4213072029 cites W2949877712 @default.
- W4213072029 cites W2951937481 @default.
- W4213072029 cites W2952461195 @default.
- W4213072029 cites W2969993699 @default.
- W4213072029 cites W2972006361 @default.
- W4213072029 cites W2982552606 @default.
- W4213072029 cites W2984633739 @default.
- W4213072029 cites W2989977616 @default.
- W4213072029 cites W2990528340 @default.
- W4213072029 cites W2997708032 @default.
- W4213072029 cites W2999044305 @default.
- W4213072029 cites W3046003662 @default.
- W4213072029 cites W3086768476 @default.
- W4213072029 cites W3112172360 @default.
- W4213072029 cites W3116452748 @default.
- W4213072029 cites W3124828689 @default.
- W4213072029 cites W3128972055 @default.
- W4213072029 cites W3133178585 @default.
- W4213072029 cites W3142241514 @default.
- W4213072029 cites W4210400672 @default.
- W4213072029 doi "https://doi.org/10.1093/bioinformatics/btac106" @default.
- W4213072029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35176130" @default.
- W4213072029 hasPublicationYear "2022" @default.
- W4213072029 type Work @default.
- W4213072029 citedByCount "14" @default.
- W4213072029 countsByYear W42130720292022 @default.
- W4213072029 countsByYear W42130720292023 @default.
- W4213072029 crossrefType "journal-article" @default.
- W4213072029 hasAuthorship W4213072029A5011129309 @default.
- W4213072029 hasAuthorship W4213072029A5033077540 @default.
- W4213072029 hasAuthorship W4213072029A5039611523 @default.
- W4213072029 hasAuthorship W4213072029A5072624830 @default.
- W4213072029 hasConcept C104317684 @default.
- W4213072029 hasConcept C116834253 @default.
- W4213072029 hasConcept C119857082 @default.
- W4213072029 hasConcept C150899416 @default.
- W4213072029 hasConcept C154945302 @default.
- W4213072029 hasConcept C18903297 @default.
- W4213072029 hasConcept C41008148 @default.
- W4213072029 hasConcept C41282012 @default.
- W4213072029 hasConcept C54355233 @default.
- W4213072029 hasConcept C67705224 @default.
- W4213072029 hasConcept C70721500 @default.
- W4213072029 hasConcept C86803240 @default.
- W4213072029 hasConceptScore W4213072029C104317684 @default.
- W4213072029 hasConceptScore W4213072029C116834253 @default.
- W4213072029 hasConceptScore W4213072029C119857082 @default.
- W4213072029 hasConceptScore W4213072029C150899416 @default.
- W4213072029 hasConceptScore W4213072029C154945302 @default.
- W4213072029 hasConceptScore W4213072029C18903297 @default.
- W4213072029 hasConceptScore W4213072029C41008148 @default.
- W4213072029 hasConceptScore W4213072029C41282012 @default.
- W4213072029 hasConceptScore W4213072029C54355233 @default.
- W4213072029 hasConceptScore W4213072029C67705224 @default.