Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213087239> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4213087239 endingPage "19378" @default.
- W4213087239 startingPage "19365" @default.
- W4213087239 abstract "In the research field of mechanical equipment fault diagnosis, usually only the existing fault types are identified, and the new emerge class of the fault is ignored, however, the new emerge fault class may also occur actually. In order to solve the problem, a novel fault diagnosis model based on deep convolution variational autoencoder network and adaptive label propagation (DCVAN-ALP) is proposed. Firstly, the initial high dimensional features are constructed by using the double tree complex wavelet packet method as the input of the model. Secondly, the convolutional neural network architecture is applied to construct the variational autoencoder, and the local and non-local characteristics of samples are embedded into the loss function for training, which is considered to improve the identification of hidden layer features of the neural network. Finally, t-SNE and the improved label propagation algorithm are adopted to process the hidden features of the neural network, which can achieve the purpose of diagnosing the existing fault class and especially new emerge fault class. Experimental results show that the proposed model can effectively extract the fault characteristics of the vibration signal, and it also has a significantly higher recognition accuracy rate than other typical deep learning methods and traditional classifiers in diagnosing new emerge fault class." @default.
- W4213087239 created "2022-02-24" @default.
- W4213087239 creator A5043039529 @default.
- W4213087239 creator A5088374149 @default.
- W4213087239 date "2022-01-01" @default.
- W4213087239 modified "2023-09-25" @default.
- W4213087239 title "Machinery New Emerge Fault Diagnosis Based on Deep Convolution Variational Autoencoder and Adaptive Label Propagation" @default.
- W4213087239 cites W1991608983 @default.
- W4213087239 cites W2001141328 @default.
- W4213087239 cites W2077942936 @default.
- W4213087239 cites W2171898484 @default.
- W4213087239 cites W2324044936 @default.
- W4213087239 cites W243674440 @default.
- W4213087239 cites W2612554669 @default.
- W4213087239 cites W2735326783 @default.
- W4213087239 cites W2762355244 @default.
- W4213087239 cites W2768753204 @default.
- W4213087239 cites W2792461833 @default.
- W4213087239 cites W2898375427 @default.
- W4213087239 cites W2978157082 @default.
- W4213087239 cites W2998506103 @default.
- W4213087239 cites W3006342871 @default.
- W4213087239 cites W3007536931 @default.
- W4213087239 cites W3008309516 @default.
- W4213087239 cites W3008819860 @default.
- W4213087239 cites W3015728455 @default.
- W4213087239 cites W3044844512 @default.
- W4213087239 cites W3049505648 @default.
- W4213087239 cites W3090682168 @default.
- W4213087239 cites W3094882317 @default.
- W4213087239 cites W3097068663 @default.
- W4213087239 cites W3108417453 @default.
- W4213087239 cites W3114016983 @default.
- W4213087239 cites W3133502632 @default.
- W4213087239 cites W3139271288 @default.
- W4213087239 cites W3154152603 @default.
- W4213087239 cites W3177524844 @default.
- W4213087239 cites W867303916 @default.
- W4213087239 doi "https://doi.org/10.1109/access.2022.3151799" @default.
- W4213087239 hasPublicationYear "2022" @default.
- W4213087239 type Work @default.
- W4213087239 citedByCount "0" @default.
- W4213087239 crossrefType "journal-article" @default.
- W4213087239 hasAuthorship W4213087239A5043039529 @default.
- W4213087239 hasAuthorship W4213087239A5088374149 @default.
- W4213087239 hasBestOaLocation W42130872391 @default.
- W4213087239 hasConcept C101738243 @default.
- W4213087239 hasConcept C108583219 @default.
- W4213087239 hasConcept C11413529 @default.
- W4213087239 hasConcept C127313418 @default.
- W4213087239 hasConcept C153180895 @default.
- W4213087239 hasConcept C154945302 @default.
- W4213087239 hasConcept C165205528 @default.
- W4213087239 hasConcept C175551986 @default.
- W4213087239 hasConcept C2777212361 @default.
- W4213087239 hasConcept C41008148 @default.
- W4213087239 hasConcept C45347329 @default.
- W4213087239 hasConcept C50644808 @default.
- W4213087239 hasConcept C81363708 @default.
- W4213087239 hasConceptScore W4213087239C101738243 @default.
- W4213087239 hasConceptScore W4213087239C108583219 @default.
- W4213087239 hasConceptScore W4213087239C11413529 @default.
- W4213087239 hasConceptScore W4213087239C127313418 @default.
- W4213087239 hasConceptScore W4213087239C153180895 @default.
- W4213087239 hasConceptScore W4213087239C154945302 @default.
- W4213087239 hasConceptScore W4213087239C165205528 @default.
- W4213087239 hasConceptScore W4213087239C175551986 @default.
- W4213087239 hasConceptScore W4213087239C2777212361 @default.
- W4213087239 hasConceptScore W4213087239C41008148 @default.
- W4213087239 hasConceptScore W4213087239C45347329 @default.
- W4213087239 hasConceptScore W4213087239C50644808 @default.
- W4213087239 hasConceptScore W4213087239C81363708 @default.
- W4213087239 hasFunder F4320322186 @default.
- W4213087239 hasLocation W42130872391 @default.
- W4213087239 hasLocation W42130872392 @default.
- W4213087239 hasOpenAccess W4213087239 @default.
- W4213087239 hasPrimaryLocation W42130872391 @default.
- W4213087239 hasRelatedWork W2669956259 @default.
- W4213087239 hasRelatedWork W2731899572 @default.
- W4213087239 hasRelatedWork W2939353110 @default.
- W4213087239 hasRelatedWork W2998168123 @default.
- W4213087239 hasRelatedWork W3116150086 @default.
- W4213087239 hasRelatedWork W3133861977 @default.
- W4213087239 hasRelatedWork W4200173597 @default.
- W4213087239 hasRelatedWork W4287995534 @default.
- W4213087239 hasRelatedWork W4312417841 @default.
- W4213087239 hasRelatedWork W4321369474 @default.
- W4213087239 hasVolume "10" @default.
- W4213087239 isParatext "false" @default.
- W4213087239 isRetracted "false" @default.
- W4213087239 workType "article" @default.