Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213090711> ?p ?o ?g. }
- W4213090711 endingPage "126525" @default.
- W4213090711 startingPage "126525" @default.
- W4213090711 abstract "Testing the compressive strength of concrete using machine learning approaches has high importance for civil engineering. Machine learning approaches provides high accuracy with reduced cost and time. However, such approaches require concrete composition data detailing the type and quantitative ratio of different materials such as water, cement, and aggregate, etc. This study incorporates a dataset where the composition of 125 different kinds of materials has been recorded. Extensive literature review has been carried out for data collection and annotation. The dataset includes traditional, as well as, advanced materials containing both RCA (recycled concrete aggregate) and GGBFS (ground granulated blast furnace slag) along with other main ingredients of concrete mix. Adding RCA and GGBFS to the concrete mix helps to produce environment friendly concrete because these materials are waste and by-products. However, increasing the number of ingredients in the concrete complicates the prediction of concrete compressive strength. Increasing RCA for concrete reduces its mechanical strength which is managed by adding GGBFS, however, the strength depends on the ratios of RCA and GGBFS. So, the compressive strength prediction of concrete containing RCA and GGBFS is crucial task for ensuring the safety of construction projects. This study presents two ensemble models for the accurate prediction of compressive strength new concrete that contains RCA and GGBFS. First ensemble, LRF, combines the LR (linear regression) and RF (random forest) through soft voting. For the second ensemble, CNN (convolutional neural networks) and LSTM (long short term memory) are leveraged. Models’ performance is evaluated through several well-known metrics including R2 (R-square), root mean square, mean absolute error, and mean square error. Results indicate that LRF and CNN-LSTM achieve the highest R2 scores of 0.93 and 0.96, respectively than the state-of-the-art models. LRF is more efficient as compared to CNN-LSTM in terms of computational time. Compared to the traditional concrete strength estimation, machine learning-based compressive strength prediction is accurate, robust and precise." @default.
- W4213090711 created "2022-02-24" @default.
- W4213090711 creator A5004210416 @default.
- W4213090711 creator A5032449041 @default.
- W4213090711 creator A5038333958 @default.
- W4213090711 creator A5058941449 @default.
- W4213090711 creator A5074629800 @default.
- W4213090711 date "2022-03-01" @default.
- W4213090711 modified "2023-10-18" @default.
- W4213090711 title "Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials" @default.
- W4213090711 cites W1772241051 @default.
- W4213090711 cites W1963872931 @default.
- W4213090711 cites W1967593783 @default.
- W4213090711 cites W1971875957 @default.
- W4213090711 cites W1984459184 @default.
- W4213090711 cites W2004245972 @default.
- W4213090711 cites W2013009522 @default.
- W4213090711 cites W2016838038 @default.
- W4213090711 cites W2017402286 @default.
- W4213090711 cites W2030708090 @default.
- W4213090711 cites W2036326303 @default.
- W4213090711 cites W2051211193 @default.
- W4213090711 cites W2054557393 @default.
- W4213090711 cites W2061458604 @default.
- W4213090711 cites W2064207613 @default.
- W4213090711 cites W2065598345 @default.
- W4213090711 cites W2067930403 @default.
- W4213090711 cites W2073093937 @default.
- W4213090711 cites W2076457099 @default.
- W4213090711 cites W2079719363 @default.
- W4213090711 cites W2119305381 @default.
- W4213090711 cites W2151596560 @default.
- W4213090711 cites W2221387818 @default.
- W4213090711 cites W2523655406 @default.
- W4213090711 cites W2546985992 @default.
- W4213090711 cites W2588276305 @default.
- W4213090711 cites W2604857083 @default.
- W4213090711 cites W2751901597 @default.
- W4213090711 cites W2767507828 @default.
- W4213090711 cites W2782098519 @default.
- W4213090711 cites W2793175918 @default.
- W4213090711 cites W2810365903 @default.
- W4213090711 cites W2906027999 @default.
- W4213090711 cites W2909726358 @default.
- W4213090711 cites W2937897688 @default.
- W4213090711 cites W2969642948 @default.
- W4213090711 cites W2986138172 @default.
- W4213090711 cites W2993243199 @default.
- W4213090711 cites W2998087826 @default.
- W4213090711 cites W3008008902 @default.
- W4213090711 cites W3012153396 @default.
- W4213090711 cites W3017305345 @default.
- W4213090711 cites W3083230207 @default.
- W4213090711 cites W3092657053 @default.
- W4213090711 cites W3092883779 @default.
- W4213090711 cites W3108751335 @default.
- W4213090711 cites W3118299338 @default.
- W4213090711 cites W3119777031 @default.
- W4213090711 doi "https://doi.org/10.1016/j.conbuildmat.2022.126525" @default.
- W4213090711 hasPublicationYear "2022" @default.
- W4213090711 type Work @default.
- W4213090711 citedByCount "16" @default.
- W4213090711 countsByYear W42130907112022 @default.
- W4213090711 countsByYear W42130907112023 @default.
- W4213090711 crossrefType "journal-article" @default.
- W4213090711 hasAuthorship W4213090711A5004210416 @default.
- W4213090711 hasAuthorship W4213090711A5032449041 @default.
- W4213090711 hasAuthorship W4213090711A5038333958 @default.
- W4213090711 hasAuthorship W4213090711A5058941449 @default.
- W4213090711 hasAuthorship W4213090711A5074629800 @default.
- W4213090711 hasConcept C159985019 @default.
- W4213090711 hasConcept C192562407 @default.
- W4213090711 hasConcept C2781191127 @default.
- W4213090711 hasConcept C30407753 @default.
- W4213090711 hasConcept C33819350 @default.
- W4213090711 hasConcept C41008148 @default.
- W4213090711 hasConcept C4679612 @default.
- W4213090711 hasConcept C523993062 @default.
- W4213090711 hasConceptScore W4213090711C159985019 @default.
- W4213090711 hasConceptScore W4213090711C192562407 @default.
- W4213090711 hasConceptScore W4213090711C2781191127 @default.
- W4213090711 hasConceptScore W4213090711C30407753 @default.
- W4213090711 hasConceptScore W4213090711C33819350 @default.
- W4213090711 hasConceptScore W4213090711C41008148 @default.
- W4213090711 hasConceptScore W4213090711C4679612 @default.
- W4213090711 hasConceptScore W4213090711C523993062 @default.
- W4213090711 hasLocation W42130907111 @default.
- W4213090711 hasOpenAccess W4213090711 @default.
- W4213090711 hasPrimaryLocation W42130907111 @default.
- W4213090711 hasRelatedWork W1983027792 @default.
- W4213090711 hasRelatedWork W2024800762 @default.
- W4213090711 hasRelatedWork W2031912511 @default.
- W4213090711 hasRelatedWork W2116594109 @default.
- W4213090711 hasRelatedWork W2399601691 @default.
- W4213090711 hasRelatedWork W2620053975 @default.
- W4213090711 hasRelatedWork W2945935838 @default.
- W4213090711 hasRelatedWork W3003614653 @default.
- W4213090711 hasRelatedWork W3036535175 @default.