Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213095841> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4213095841 abstract "In the last few decades, Feature selection is one of the most challenging and open problem to researchers. The rapid progress in computational techniques causes the generation and recording of data in huge size. Though there exists various feature ranking methods, the processing of data is still a challenging task due to its computational complexity. The filter method has many advantages over the wrapper method. The filter methods are classifier independent and have better computational efficiency. Here, a subset of features is selected based on a certain goal function. Most of these goal functions employs the principle of information theory. Most of the algorithms in earlier studies addressed two factors, that is, maximization of relevancy and minimization of redundancy without considering the interaction among the features. This paper developed a new forward filter feature selection algorithm based on mutual information known as Maximum Dual Interaction and Maximum Feature Relevance(MDIMFR). This method considers all the three factors: relevance, redundancy, and feature interaction. This method is experimented on three datasets and compares the performance with existing methods. The results show that MDIMFR outperforms the existing competitive feature selection methods of recent studies: mRMR, JMIM and CMIM. MDIMFR also achieves good stability in average classification accuracy for a certain number of features, say k and above. Hence, these k features can be considered as an optimal feature set." @default.
- W4213095841 created "2022-02-24" @default.
- W4213095841 creator A5004027644 @default.
- W4213095841 creator A5007673396 @default.
- W4213095841 date "2021-10-21" @default.
- W4213095841 modified "2023-10-16" @default.
- W4213095841 title "A Novel Forward Filter Feature Selection Algorithm Based on Maximum Dual Interaction and Maximum Feature Relevance(MDIMFR) for Machine Learning" @default.
- W4213095841 doi "https://doi.org/10.1109/icacc-202152719.2021.9708300" @default.
- W4213095841 hasPublicationYear "2021" @default.
- W4213095841 type Work @default.
- W4213095841 citedByCount "1" @default.
- W4213095841 countsByYear W42130958412023 @default.
- W4213095841 crossrefType "proceedings-article" @default.
- W4213095841 hasAuthorship W4213095841A5004027644 @default.
- W4213095841 hasAuthorship W4213095841A5007673396 @default.
- W4213095841 hasConcept C106131492 @default.
- W4213095841 hasConcept C111919701 @default.
- W4213095841 hasConcept C11413529 @default.
- W4213095841 hasConcept C119857082 @default.
- W4213095841 hasConcept C124101348 @default.
- W4213095841 hasConcept C126255220 @default.
- W4213095841 hasConcept C138885662 @default.
- W4213095841 hasConcept C148483581 @default.
- W4213095841 hasConcept C152124472 @default.
- W4213095841 hasConcept C152139883 @default.
- W4213095841 hasConcept C153180895 @default.
- W4213095841 hasConcept C154945302 @default.
- W4213095841 hasConcept C158154518 @default.
- W4213095841 hasConcept C16811321 @default.
- W4213095841 hasConcept C17744445 @default.
- W4213095841 hasConcept C179799912 @default.
- W4213095841 hasConcept C199539241 @default.
- W4213095841 hasConcept C2776330181 @default.
- W4213095841 hasConcept C2776401178 @default.
- W4213095841 hasConcept C31972630 @default.
- W4213095841 hasConcept C33923547 @default.
- W4213095841 hasConcept C41008148 @default.
- W4213095841 hasConcept C41895202 @default.
- W4213095841 hasConcept C95623464 @default.
- W4213095841 hasConceptScore W4213095841C106131492 @default.
- W4213095841 hasConceptScore W4213095841C111919701 @default.
- W4213095841 hasConceptScore W4213095841C11413529 @default.
- W4213095841 hasConceptScore W4213095841C119857082 @default.
- W4213095841 hasConceptScore W4213095841C124101348 @default.
- W4213095841 hasConceptScore W4213095841C126255220 @default.
- W4213095841 hasConceptScore W4213095841C138885662 @default.
- W4213095841 hasConceptScore W4213095841C148483581 @default.
- W4213095841 hasConceptScore W4213095841C152124472 @default.
- W4213095841 hasConceptScore W4213095841C152139883 @default.
- W4213095841 hasConceptScore W4213095841C153180895 @default.
- W4213095841 hasConceptScore W4213095841C154945302 @default.
- W4213095841 hasConceptScore W4213095841C158154518 @default.
- W4213095841 hasConceptScore W4213095841C16811321 @default.
- W4213095841 hasConceptScore W4213095841C17744445 @default.
- W4213095841 hasConceptScore W4213095841C179799912 @default.
- W4213095841 hasConceptScore W4213095841C199539241 @default.
- W4213095841 hasConceptScore W4213095841C2776330181 @default.
- W4213095841 hasConceptScore W4213095841C2776401178 @default.
- W4213095841 hasConceptScore W4213095841C31972630 @default.
- W4213095841 hasConceptScore W4213095841C33923547 @default.
- W4213095841 hasConceptScore W4213095841C41008148 @default.
- W4213095841 hasConceptScore W4213095841C41895202 @default.
- W4213095841 hasConceptScore W4213095841C95623464 @default.
- W4213095841 hasLocation W42130958411 @default.
- W4213095841 hasOpenAccess W4213095841 @default.
- W4213095841 hasPrimaryLocation W42130958411 @default.
- W4213095841 hasRelatedWork W1505313971 @default.
- W4213095841 hasRelatedWork W1566319786 @default.
- W4213095841 hasRelatedWork W1965771882 @default.
- W4213095841 hasRelatedWork W2042378471 @default.
- W4213095841 hasRelatedWork W2154053567 @default.
- W4213095841 hasRelatedWork W2277968882 @default.
- W4213095841 hasRelatedWork W2286904880 @default.
- W4213095841 hasRelatedWork W2352513827 @default.
- W4213095841 hasRelatedWork W2954668464 @default.
- W4213095841 hasRelatedWork W3081005157 @default.
- W4213095841 isParatext "false" @default.
- W4213095841 isRetracted "false" @default.
- W4213095841 workType "article" @default.