Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213108403> ?p ?o ?g. }
- W4213108403 endingPage "108833" @default.
- W4213108403 startingPage "108833" @default.
- W4213108403 abstract "Prediction of indoor airborne pollutant concentrations can enable a smart indoor air quality control strategy that potentially reduces building energy use and improves occupant comfort. In service of this overarching goal, this work pursues four objectives: 1) Determine which low-cost airborne pollutant sensors are useful for prediction of indoor air quality variables of interest, investigating whether a few commercially available sensors held value for making such predictions. 2) Investigate which algorithms are most useful for making these predictions. 3) Develop an understanding of how far into the future we can conceivably predict indoor concentrations based on low-cost airborne pollutant signals. 4) Investigate methods for predicting elevated concentration events from historical data. Four different methods (Rolling Average, Random Forest, Gradient Boosting, and Long-Short Term Memory) for predicting eight indoor pollutant concentrations (carbon dioxide, nitrogen dioxide, ozone, PM 1, PM 2.5, PM 10, formaldehyde, total volatile organic compounds) are compared for their ability to predict future sensor signals in a single commercial building in California. Long-Short Term Memory was consistently the best method for predicting indoor pollutants, though the best combinations of input variables differed depending on pollutant of interest. To predict elevated concentration events, results show that indirect classification through a regression prediction that was then compared to a threshold performed marginally better than a direct classification prediction for all pollutants except PM1." @default.
- W4213108403 created "2022-02-24" @default.
- W4213108403 creator A5008079645 @default.
- W4213108403 creator A5009379093 @default.
- W4213108403 creator A5047511553 @default.
- W4213108403 creator A5059744757 @default.
- W4213108403 creator A5065976895 @default.
- W4213108403 creator A5073271421 @default.
- W4213108403 creator A5073535794 @default.
- W4213108403 date "2022-04-01" @default.
- W4213108403 modified "2023-09-23" @default.
- W4213108403 title "Predicting airborne pollutant concentrations and events in a commercial building using low-cost pollutant sensors and machine learning: A case study" @default.
- W4213108403 cites W1812709428 @default.
- W4213108403 cites W1973106674 @default.
- W4213108403 cites W1999123294 @default.
- W4213108403 cites W2014025751 @default.
- W4213108403 cites W2018851888 @default.
- W4213108403 cites W2022978313 @default.
- W4213108403 cites W2024526649 @default.
- W4213108403 cites W2063094669 @default.
- W4213108403 cites W2064675550 @default.
- W4213108403 cites W2070493638 @default.
- W4213108403 cites W2075050057 @default.
- W4213108403 cites W2135747820 @default.
- W4213108403 cites W2140204557 @default.
- W4213108403 cites W2177101396 @default.
- W4213108403 cites W2258688510 @default.
- W4213108403 cites W2311946352 @default.
- W4213108403 cites W2314367095 @default.
- W4213108403 cites W2336457744 @default.
- W4213108403 cites W2345246782 @default.
- W4213108403 cites W2471323753 @default.
- W4213108403 cites W2474203514 @default.
- W4213108403 cites W2475217919 @default.
- W4213108403 cites W2508438097 @default.
- W4213108403 cites W2524646253 @default.
- W4213108403 cites W2530598758 @default.
- W4213108403 cites W2547272800 @default.
- W4213108403 cites W2558671511 @default.
- W4213108403 cites W2590493644 @default.
- W4213108403 cites W2728035379 @default.
- W4213108403 cites W2752065648 @default.
- W4213108403 cites W2754802952 @default.
- W4213108403 cites W2761875693 @default.
- W4213108403 cites W2766788876 @default.
- W4213108403 cites W2780282308 @default.
- W4213108403 cites W2785772998 @default.
- W4213108403 cites W2786745615 @default.
- W4213108403 cites W2789881925 @default.
- W4213108403 cites W2793404076 @default.
- W4213108403 cites W2801004185 @default.
- W4213108403 cites W2801165642 @default.
- W4213108403 cites W2880156893 @default.
- W4213108403 cites W2894665398 @default.
- W4213108403 cites W2895147187 @default.
- W4213108403 cites W2895236552 @default.
- W4213108403 cites W2919498399 @default.
- W4213108403 cites W2922476388 @default.
- W4213108403 cites W2940578777 @default.
- W4213108403 cites W2940646341 @default.
- W4213108403 cites W2946042712 @default.
- W4213108403 cites W2947513075 @default.
- W4213108403 cites W2963928450 @default.
- W4213108403 cites W2970303123 @default.
- W4213108403 cites W2972071926 @default.
- W4213108403 cites W2979041009 @default.
- W4213108403 cites W2979326004 @default.
- W4213108403 cites W2983762551 @default.
- W4213108403 cites W2999309192 @default.
- W4213108403 cites W3001049522 @default.
- W4213108403 cites W3006049880 @default.
- W4213108403 cites W3006617421 @default.
- W4213108403 cites W3007450380 @default.
- W4213108403 cites W3008571545 @default.
- W4213108403 cites W3017269091 @default.
- W4213108403 cites W3029679877 @default.
- W4213108403 cites W3034251609 @default.
- W4213108403 cites W3097573141 @default.
- W4213108403 cites W3101477021 @default.
- W4213108403 cites W3114920686 @default.
- W4213108403 cites W3134223197 @default.
- W4213108403 cites W3139313933 @default.
- W4213108403 doi "https://doi.org/10.1016/j.buildenv.2022.108833" @default.
- W4213108403 hasPublicationYear "2022" @default.
- W4213108403 type Work @default.
- W4213108403 citedByCount "8" @default.
- W4213108403 countsByYear W42131084032022 @default.
- W4213108403 countsByYear W42131084032023 @default.
- W4213108403 crossrefType "journal-article" @default.
- W4213108403 hasAuthorship W4213108403A5008079645 @default.
- W4213108403 hasAuthorship W4213108403A5009379093 @default.
- W4213108403 hasAuthorship W4213108403A5047511553 @default.
- W4213108403 hasAuthorship W4213108403A5059744757 @default.
- W4213108403 hasAuthorship W4213108403A5065976895 @default.
- W4213108403 hasAuthorship W4213108403A5073271421 @default.
- W4213108403 hasAuthorship W4213108403A5073535794 @default.
- W4213108403 hasConcept C119857082 @default.
- W4213108403 hasConcept C121332964 @default.