Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213137223> ?p ?o ?g. }
- W4213137223 endingPage "16016" @default.
- W4213137223 startingPage "16006" @default.
- W4213137223 abstract "Internet of Things (IoT) networks are key to the realization of modern industries and societies. A key application of IoT is in smart-grid communications. Smart-grid networks are resource constrained in terms of computing power and energy capacity. Similarly, the wireless links between devices are typically associated with high packet-loss rates, low throughput, and instability. To provide a sustainable communication mechanism, an IoT network stack is proposed for these devices. However, each network stack layer has its own constraints. For example, to facilitate the operation of these low-power and lossy network (LLN) devices, the international engineering task force (IETF) standardized a network-layer protocol called a routing protocol for low-power and lossy networks (RPLs). RPL often creates an inefficient network in densely deployed and varying traffic load conditions. Future dense IoT-based networks are expected to automatically optimize the reliability and efficiency of communication by inferring the diverse features of both the environments and actions of the devices. Machine learning (ML) provides a promising framework for such a dense network environment. In this study, we examine the underlying perspective of ML for such systems. We utilize the multiarmed bandit (MAB)-based expected energy count (BEEX) technique, which provides nodes the ability to effectively optimize their operation. Using the proposed mechanism, nodes can intelligently adapt their network-layer behavior. The performance of the proposed (BEEX) algorithm is evaluated through a Contiki 3.0 Cooja simulation. The proposed method improves the energy consumption and packet delivery ratio and produces a lower control overhead than other state-of-the-art mechanisms." @default.
- W4213137223 created "2022-02-24" @default.
- W4213137223 creator A5019789320 @default.
- W4213137223 creator A5031261777 @default.
- W4213137223 creator A5033598310 @default.
- W4213137223 creator A5041862198 @default.
- W4213137223 date "2022-09-01" @default.
- W4213137223 modified "2023-09-24" @default.
- W4213137223 title "Learning-Based Resource Management for Low-Power and Lossy IoT Networks" @default.
- W4213137223 cites W1997984679 @default.
- W4213137223 cites W2038194220 @default.
- W4213137223 cites W2058401212 @default.
- W4213137223 cites W2106335692 @default.
- W4213137223 cites W2119866123 @default.
- W4213137223 cites W2164919086 @default.
- W4213137223 cites W2269222209 @default.
- W4213137223 cites W2298500030 @default.
- W4213137223 cites W2325877089 @default.
- W4213137223 cites W2470924389 @default.
- W4213137223 cites W2626820647 @default.
- W4213137223 cites W2702883767 @default.
- W4213137223 cites W2745992310 @default.
- W4213137223 cites W2770564120 @default.
- W4213137223 cites W2782098519 @default.
- W4213137223 cites W2794385060 @default.
- W4213137223 cites W2796634612 @default.
- W4213137223 cites W2804695662 @default.
- W4213137223 cites W2900387126 @default.
- W4213137223 cites W2911127172 @default.
- W4213137223 cites W2916111590 @default.
- W4213137223 cites W2918106404 @default.
- W4213137223 cites W2953584294 @default.
- W4213137223 cites W2963422046 @default.
- W4213137223 cites W3006191871 @default.
- W4213137223 cites W3013865443 @default.
- W4213137223 cites W3035883408 @default.
- W4213137223 cites W3043919840 @default.
- W4213137223 cites W3103913399 @default.
- W4213137223 cites W3138616181 @default.
- W4213137223 cites W4205621617 @default.
- W4213137223 cites W4236269498 @default.
- W4213137223 doi "https://doi.org/10.1109/jiot.2022.3152929" @default.
- W4213137223 hasPublicationYear "2022" @default.
- W4213137223 type Work @default.
- W4213137223 citedByCount "1" @default.
- W4213137223 countsByYear W42131372232023 @default.
- W4213137223 crossrefType "journal-article" @default.
- W4213137223 hasAuthorship W4213137223A5019789320 @default.
- W4213137223 hasAuthorship W4213137223A5031261777 @default.
- W4213137223 hasAuthorship W4213137223A5033598310 @default.
- W4213137223 hasAuthorship W4213137223A5041862198 @default.
- W4213137223 hasConcept C104954878 @default.
- W4213137223 hasConcept C105339364 @default.
- W4213137223 hasConcept C10558101 @default.
- W4213137223 hasConcept C111919701 @default.
- W4213137223 hasConcept C120314980 @default.
- W4213137223 hasConcept C154945302 @default.
- W4213137223 hasConcept C158379750 @default.
- W4213137223 hasConcept C165021410 @default.
- W4213137223 hasConcept C18903297 @default.
- W4213137223 hasConcept C190793597 @default.
- W4213137223 hasConcept C24590314 @default.
- W4213137223 hasConcept C2779960059 @default.
- W4213137223 hasConcept C2780165032 @default.
- W4213137223 hasConcept C31258907 @default.
- W4213137223 hasConcept C38601921 @default.
- W4213137223 hasConcept C41008148 @default.
- W4213137223 hasConcept C54108766 @default.
- W4213137223 hasConcept C86803240 @default.
- W4213137223 hasConceptScore W4213137223C104954878 @default.
- W4213137223 hasConceptScore W4213137223C105339364 @default.
- W4213137223 hasConceptScore W4213137223C10558101 @default.
- W4213137223 hasConceptScore W4213137223C111919701 @default.
- W4213137223 hasConceptScore W4213137223C120314980 @default.
- W4213137223 hasConceptScore W4213137223C154945302 @default.
- W4213137223 hasConceptScore W4213137223C158379750 @default.
- W4213137223 hasConceptScore W4213137223C165021410 @default.
- W4213137223 hasConceptScore W4213137223C18903297 @default.
- W4213137223 hasConceptScore W4213137223C190793597 @default.
- W4213137223 hasConceptScore W4213137223C24590314 @default.
- W4213137223 hasConceptScore W4213137223C2779960059 @default.
- W4213137223 hasConceptScore W4213137223C2780165032 @default.
- W4213137223 hasConceptScore W4213137223C31258907 @default.
- W4213137223 hasConceptScore W4213137223C38601921 @default.
- W4213137223 hasConceptScore W4213137223C41008148 @default.
- W4213137223 hasConceptScore W4213137223C54108766 @default.
- W4213137223 hasConceptScore W4213137223C86803240 @default.
- W4213137223 hasIssue "17" @default.
- W4213137223 hasLocation W42131372231 @default.
- W4213137223 hasOpenAccess W4213137223 @default.
- W4213137223 hasPrimaryLocation W42131372231 @default.
- W4213137223 hasRelatedWork W1580065446 @default.
- W4213137223 hasRelatedWork W2038134757 @default.
- W4213137223 hasRelatedWork W2050552266 @default.
- W4213137223 hasRelatedWork W2061168534 @default.
- W4213137223 hasRelatedWork W2064481651 @default.
- W4213137223 hasRelatedWork W2078600672 @default.
- W4213137223 hasRelatedWork W2111277886 @default.