Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213143350> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4213143350 abstract "Abstract Motivation: Breakthroughs in high-throughput technologies and machine learning methods have enabled the shift towards multi-omics modeling as the preferred mean to understand the mechanisms underlying biological processes, and to improve complex disease prognosis in clinical settings. However, most multi-omic studies only use transcriptomics and epigenomics due to their over-representation in databases and their early technical maturity compared to others omics. For complex phenotypes and mechanisms, not leveraging all the omics despite their varying degree of availability can lead to a failure to understand the underlying biological mechanisms. Results: We proposed MOT (Multi-Omic Transformer), a deep learning based model using the transformer architecture, that discriminates complex phenotypes (herein cancers types) based on five omics data type regardless of their availability: transcriptomics (mRNA and miRNA), epigenomics (DNA methylation), copy number variations (CNVs), and proteomics. At its core, MOT uses a data augmentation scheme that allows it to handle missing omics views and its attention layers give a macro level of interpretability for each phenotypes. Indeed, MOT identifies the required omic type for the best prediction for each phenotype and therefore could guide clinical decision making when acquiring data to confirm a diagnostic. It achieves an accuracy score of 96.04% after 5-fold cross-validation among 33 tumour types. The newly introduced model can integrate and analyse five different omics data while handling the missing omics views and can also identify the essential omics data for the tumour multiclass classification tasks. Availability and implementation: MOT source code is available at https://github.com/dizam92/multiomic_predictions." @default.
- W4213143350 created "2022-02-24" @default.
- W4213143350 creator A5008649323 @default.
- W4213143350 creator A5029191386 @default.
- W4213143350 creator A5037753193 @default.
- W4213143350 creator A5054812796 @default.
- W4213143350 date "2022-02-21" @default.
- W4213143350 modified "2023-10-14" @default.
- W4213143350 title "MOT: a Multi-Omics Transformer for Multiclass Classification Tumour Types Predictions" @default.
- W4213143350 doi "https://doi.org/10.21203/rs.3.rs-1348696/v1" @default.
- W4213143350 hasPublicationYear "2022" @default.
- W4213143350 type Work @default.
- W4213143350 citedByCount "0" @default.
- W4213143350 crossrefType "posted-content" @default.
- W4213143350 hasAuthorship W4213143350A5008649323 @default.
- W4213143350 hasAuthorship W4213143350A5029191386 @default.
- W4213143350 hasAuthorship W4213143350A5037753193 @default.
- W4213143350 hasAuthorship W4213143350A5054812796 @default.
- W4213143350 hasBestOaLocation W42131433501 @default.
- W4213143350 hasConcept C104317684 @default.
- W4213143350 hasConcept C119857082 @default.
- W4213143350 hasConcept C121912465 @default.
- W4213143350 hasConcept C138958017 @default.
- W4213143350 hasConcept C150194340 @default.
- W4213143350 hasConcept C157585117 @default.
- W4213143350 hasConcept C190727270 @default.
- W4213143350 hasConcept C199360897 @default.
- W4213143350 hasConcept C21565614 @default.
- W4213143350 hasConcept C2781067378 @default.
- W4213143350 hasConcept C41008148 @default.
- W4213143350 hasConcept C46111723 @default.
- W4213143350 hasConcept C55493867 @default.
- W4213143350 hasConcept C60644358 @default.
- W4213143350 hasConcept C70721500 @default.
- W4213143350 hasConcept C86803240 @default.
- W4213143350 hasConceptScore W4213143350C104317684 @default.
- W4213143350 hasConceptScore W4213143350C119857082 @default.
- W4213143350 hasConceptScore W4213143350C121912465 @default.
- W4213143350 hasConceptScore W4213143350C138958017 @default.
- W4213143350 hasConceptScore W4213143350C150194340 @default.
- W4213143350 hasConceptScore W4213143350C157585117 @default.
- W4213143350 hasConceptScore W4213143350C190727270 @default.
- W4213143350 hasConceptScore W4213143350C199360897 @default.
- W4213143350 hasConceptScore W4213143350C21565614 @default.
- W4213143350 hasConceptScore W4213143350C2781067378 @default.
- W4213143350 hasConceptScore W4213143350C41008148 @default.
- W4213143350 hasConceptScore W4213143350C46111723 @default.
- W4213143350 hasConceptScore W4213143350C55493867 @default.
- W4213143350 hasConceptScore W4213143350C60644358 @default.
- W4213143350 hasConceptScore W4213143350C70721500 @default.
- W4213143350 hasConceptScore W4213143350C86803240 @default.
- W4213143350 hasLocation W42131433501 @default.
- W4213143350 hasLocation W42131433502 @default.
- W4213143350 hasOpenAccess W4213143350 @default.
- W4213143350 hasPrimaryLocation W42131433501 @default.
- W4213143350 hasRelatedWork W2104887694 @default.
- W4213143350 hasRelatedWork W2152476191 @default.
- W4213143350 hasRelatedWork W2892618895 @default.
- W4213143350 hasRelatedWork W2988616857 @default.
- W4213143350 hasRelatedWork W2998655779 @default.
- W4213143350 hasRelatedWork W3093552705 @default.
- W4213143350 hasRelatedWork W3174074244 @default.
- W4213143350 hasRelatedWork W3199823872 @default.
- W4213143350 hasRelatedWork W4211199671 @default.
- W4213143350 hasRelatedWork W4306180135 @default.
- W4213143350 isParatext "false" @default.
- W4213143350 isRetracted "false" @default.
- W4213143350 workType "article" @default.