Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213161382> ?p ?o ?g. }
- W4213161382 endingPage "592" @default.
- W4213161382 startingPage "579" @default.
- W4213161382 abstract "Discussion is more convincing than standard, unidirectional messaging, but its interactive nature makes it difficult to scale up. We created a chatbot to emulate the most important traits of discussion. A simple argument pointing out the existence of a scientific consensus on the safety of genetically modified organisms (GMOs) already led to more positive attitudes towards GMOs, compared with a control message. Providing participants with good arguments rebutting the most common counterarguments against GMOs led to much more positive attitudes towards GMOs, whether the participants could immediately see all the arguments or could select the most relevant arguments in a chatbot. Participants holding the most negative attitudes displayed more attitude change in favour of GMOs. Participants updated their beliefs when presented with good arguments, but we found no evidence that an interactive chatbot proves more persuasive than a list of arguments and counterarguments. In a Registered Report, Altay et al. find that learning about the scientific consensus on genetically modified organisms (GMOs) reduces the gap between public opinion and scientists. This gap is also narrowed, to a greater extent, by reading counterarguments to anti-GMO arguments in a chatbot or in a list." @default.
- W4213161382 created "2022-02-24" @default.
- W4213161382 creator A5000644290 @default.
- W4213161382 creator A5008098458 @default.
- W4213161382 creator A5050700304 @default.
- W4213161382 creator A5072330860 @default.
- W4213161382 creator A5080880938 @default.
- W4213161382 creator A5088419067 @default.
- W4213161382 date "2022-02-14" @default.
- W4213161382 modified "2023-09-30" @default.
- W4213161382 title "Scaling up interactive argumentation by providing counterarguments with a chatbot" @default.
- W4213161382 cites W1539896512 @default.
- W4213161382 cites W1613353461 @default.
- W4213161382 cites W175458479 @default.
- W4213161382 cites W1908991493 @default.
- W4213161382 cites W1971754659 @default.
- W4213161382 cites W1985424752 @default.
- W4213161382 cites W2000131570 @default.
- W4213161382 cites W2018503936 @default.
- W4213161382 cites W2021768815 @default.
- W4213161382 cites W2035305558 @default.
- W4213161382 cites W2040442527 @default.
- W4213161382 cites W2057203551 @default.
- W4213161382 cites W2087484885 @default.
- W4213161382 cites W2089347171 @default.
- W4213161382 cites W2101878382 @default.
- W4213161382 cites W2116926372 @default.
- W4213161382 cites W2119654925 @default.
- W4213161382 cites W2124173455 @default.
- W4213161382 cites W2127228400 @default.
- W4213161382 cites W2132490153 @default.
- W4213161382 cites W2132553681 @default.
- W4213161382 cites W2132890897 @default.
- W4213161382 cites W2133123427 @default.
- W4213161382 cites W2139841269 @default.
- W4213161382 cites W2141643126 @default.
- W4213161382 cites W2143968769 @default.
- W4213161382 cites W2144200470 @default.
- W4213161382 cites W2145416536 @default.
- W4213161382 cites W2154338033 @default.
- W4213161382 cites W2159667899 @default.
- W4213161382 cites W2164043363 @default.
- W4213161382 cites W2323368791 @default.
- W4213161382 cites W2340186857 @default.
- W4213161382 cites W2346002591 @default.
- W4213161382 cites W2398985301 @default.
- W4213161382 cites W2499504271 @default.
- W4213161382 cites W2502933860 @default.
- W4213161382 cites W2520703033 @default.
- W4213161382 cites W2549224720 @default.
- W4213161382 cites W2610765860 @default.
- W4213161382 cites W2612002023 @default.
- W4213161382 cites W2615740406 @default.
- W4213161382 cites W2756167825 @default.
- W4213161382 cites W2773952454 @default.
- W4213161382 cites W2791112841 @default.
- W4213161382 cites W2805784837 @default.
- W4213161382 cites W2848366362 @default.
- W4213161382 cites W2888317736 @default.
- W4213161382 cites W2892094075 @default.
- W4213161382 cites W2895665548 @default.
- W4213161382 cites W2899727900 @default.
- W4213161382 cites W2900230278 @default.
- W4213161382 cites W2901206377 @default.
- W4213161382 cites W2914105364 @default.
- W4213161382 cites W2943341272 @default.
- W4213161382 cites W2947287955 @default.
- W4213161382 cites W2966983573 @default.
- W4213161382 cites W298607745 @default.
- W4213161382 cites W3006086281 @default.
- W4213161382 cites W3010084704 @default.
- W4213161382 cites W3022985396 @default.
- W4213161382 cites W3025953302 @default.
- W4213161382 cites W3082187871 @default.
- W4213161382 cites W3115668149 @default.
- W4213161382 cites W3121359532 @default.
- W4213161382 cites W3122721219 @default.
- W4213161382 cites W3124634669 @default.
- W4213161382 cites W3126124149 @default.
- W4213161382 cites W3146304353 @default.
- W4213161382 cites W396053900 @default.
- W4213161382 cites W4233350514 @default.
- W4213161382 cites W4234029061 @default.
- W4213161382 cites W4245369486 @default.
- W4213161382 cites W4253475453 @default.
- W4213161382 doi "https://doi.org/10.1038/s41562-021-01271-w" @default.
- W4213161382 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35165435" @default.
- W4213161382 hasPublicationYear "2022" @default.
- W4213161382 type Work @default.
- W4213161382 citedByCount "9" @default.
- W4213161382 countsByYear W42131613822022 @default.
- W4213161382 countsByYear W42131613822023 @default.
- W4213161382 crossrefType "journal-article" @default.
- W4213161382 hasAuthorship W4213161382A5000644290 @default.
- W4213161382 hasAuthorship W4213161382A5008098458 @default.
- W4213161382 hasAuthorship W4213161382A5050700304 @default.
- W4213161382 hasAuthorship W4213161382A5072330860 @default.
- W4213161382 hasAuthorship W4213161382A5080880938 @default.