Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213172479> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4213172479 abstract "One primary aspect in customer services is to provide immediate solution towards payment verification issues, such as a time delay of payment confirmation by the payment service provider or supplier. This paper presents a development of an accurate optical character recognition (OCR) system using convolutional neural network with deep learning algorithm, which can skip some steps in the workflow of manual payment approval to fasten the process of payment verification and confirmation. By using some machine learning frameworks of pyTorch utilizing Tensors and CUDA-GPU parallel computing, the machine learning based OCR system was developed and tested with the actual data. The real data sets used here cover the non-uniformity of the receipt bill's papers with various conditions (crumple, water drops, and folds) with some nature of the customer's overall camera noise, angle, and lighting. Several experiments associated with data preparation, deep learning parameter settings, and model performance comparison, were properly conducted to obtain a high quality of OCR system to detect trace number, approval codes, and nominals on the widely-used payment receipts. The resulting OCR system performed very satisfactory with 100% accuracy on testing data set. This promising results permit for the integration between this accurate and automated OCR system and chat environment with chatbot technology in order to provide better user experience and immediate and reliable solution toward payment verification issues." @default.
- W4213172479 created "2022-02-24" @default.
- W4213172479 creator A5032186969 @default.
- W4213172479 creator A5078225115 @default.
- W4213172479 date "2021-10-25" @default.
- W4213172479 modified "2023-09-24" @default.
- W4213172479 title "Developing Automated Optical Character Recognition System Using Machine Learning Algorithm to Solve Payment Verification Issues" @default.
- W4213172479 cites W1901616594 @default.
- W4213172479 cites W2001642682 @default.
- W4213172479 cites W2140485652 @default.
- W4213172479 cites W2964322605 @default.
- W4213172479 cites W3004846386 @default.
- W4213172479 cites W3043055068 @default.
- W4213172479 cites W3147487469 @default.
- W4213172479 cites W3152461875 @default.
- W4213172479 cites W3157124851 @default.
- W4213172479 cites W3159365224 @default.
- W4213172479 cites W3177684257 @default.
- W4213172479 cites W4241685809 @default.
- W4213172479 doi "https://doi.org/10.1109/icoris52787.2021.9649514" @default.
- W4213172479 hasPublicationYear "2021" @default.
- W4213172479 type Work @default.
- W4213172479 citedByCount "2" @default.
- W4213172479 countsByYear W42131724792022 @default.
- W4213172479 crossrefType "proceedings-article" @default.
- W4213172479 hasAuthorship W4213172479A5032186969 @default.
- W4213172479 hasAuthorship W4213172479A5078225115 @default.
- W4213172479 hasConcept C108583219 @default.
- W4213172479 hasConcept C11413529 @default.
- W4213172479 hasConcept C115961682 @default.
- W4213172479 hasConcept C119857082 @default.
- W4213172479 hasConcept C124101348 @default.
- W4213172479 hasConcept C136764020 @default.
- W4213172479 hasConcept C145097563 @default.
- W4213172479 hasConcept C154945302 @default.
- W4213172479 hasConcept C177212765 @default.
- W4213172479 hasConcept C2776983043 @default.
- W4213172479 hasConcept C41008148 @default.
- W4213172479 hasConcept C546480517 @default.
- W4213172479 hasConcept C77088390 @default.
- W4213172479 hasConcept C81363708 @default.
- W4213172479 hasConceptScore W4213172479C108583219 @default.
- W4213172479 hasConceptScore W4213172479C11413529 @default.
- W4213172479 hasConceptScore W4213172479C115961682 @default.
- W4213172479 hasConceptScore W4213172479C119857082 @default.
- W4213172479 hasConceptScore W4213172479C124101348 @default.
- W4213172479 hasConceptScore W4213172479C136764020 @default.
- W4213172479 hasConceptScore W4213172479C145097563 @default.
- W4213172479 hasConceptScore W4213172479C154945302 @default.
- W4213172479 hasConceptScore W4213172479C177212765 @default.
- W4213172479 hasConceptScore W4213172479C2776983043 @default.
- W4213172479 hasConceptScore W4213172479C41008148 @default.
- W4213172479 hasConceptScore W4213172479C546480517 @default.
- W4213172479 hasConceptScore W4213172479C77088390 @default.
- W4213172479 hasConceptScore W4213172479C81363708 @default.
- W4213172479 hasFunder F4320323076 @default.
- W4213172479 hasLocation W42131724791 @default.
- W4213172479 hasOpenAccess W4213172479 @default.
- W4213172479 hasPrimaryLocation W42131724791 @default.
- W4213172479 hasRelatedWork W2337926734 @default.
- W4213172479 hasRelatedWork W2731899572 @default.
- W4213172479 hasRelatedWork W2763109982 @default.
- W4213172479 hasRelatedWork W3021430260 @default.
- W4213172479 hasRelatedWork W3049917942 @default.
- W4213172479 hasRelatedWork W3116150086 @default.
- W4213172479 hasRelatedWork W3133861977 @default.
- W4213172479 hasRelatedWork W3136076031 @default.
- W4213172479 hasRelatedWork W4200173597 @default.
- W4213172479 hasRelatedWork W3009789068 @default.
- W4213172479 isParatext "false" @default.
- W4213172479 isRetracted "false" @default.
- W4213172479 workType "article" @default.