Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213177906> ?p ?o ?g. }
- W4213177906 endingPage "108350" @default.
- W4213177906 startingPage "108350" @default.
- W4213177906 abstract "Distance Metric Learning for Large Margin Nearest Neighbor (LMNN), as a classic distance metric learning (DML) method, has attracted much attention among researchers. However, it, like most of the existing DML methods, cannot be guaranteed to achieve independent and shared feature subspaces from multiple sources or different feature subsets, such that much statistical feature information is ignored in model learning. In this paper, we propose a novel DML model, called Multi-view DML Based on Independent and Shared Feature Subspace (MVML-ISFS), which learns multiple distance metrics to unify the information from multiple views. The proposed method finds a distance metric for each view in an independent feature space to preserve its specific property as well as a sparse representation related to the distance metrics from distinct views in a shared feature space to remain their common properties. The objective problem of MVML-ISFS is formulated based on LMNN, thus encouraging a large margin for each view that makes the distance between each of the same class pairs of samples be smaller than that between each of the different class pairs of samples. The proposed model in MVML-ISFS involves multivariate variables, which are optimized by a gradient descent strategy. The experimental results show the effectiveness of our MVML-ISFS on remote sensing, face, forest fire, and UCI datasets." @default.
- W4213177906 created "2022-02-24" @default.
- W4213177906 creator A5022154076 @default.
- W4213177906 creator A5034001099 @default.
- W4213177906 creator A5039671101 @default.
- W4213177906 creator A5087729203 @default.
- W4213177906 date "2022-05-01" @default.
- W4213177906 modified "2023-10-16" @default.
- W4213177906 title "Multi-view distance metric learning via independent and shared feature subspace with applications to face and forest fire recognition, and remote sensing classification" @default.
- W4213177906 cites W1496314943 @default.
- W4213177906 cites W1973965874 @default.
- W4213177906 cites W1991519797 @default.
- W4213177906 cites W1996118086 @default.
- W4213177906 cites W2005368619 @default.
- W4213177906 cites W2015966799 @default.
- W4213177906 cites W2040329636 @default.
- W4213177906 cites W2050096287 @default.
- W4213177906 cites W2088252378 @default.
- W4213177906 cites W2103024562 @default.
- W4213177906 cites W2121647436 @default.
- W4213177906 cites W2130187411 @default.
- W4213177906 cites W2145343266 @default.
- W4213177906 cites W2169495281 @default.
- W4213177906 cites W2186500555 @default.
- W4213177906 cites W2240204456 @default.
- W4213177906 cites W2555454054 @default.
- W4213177906 cites W2587382559 @default.
- W4213177906 cites W2604305041 @default.
- W4213177906 cites W2753064086 @default.
- W4213177906 cites W2783863635 @default.
- W4213177906 cites W2791052411 @default.
- W4213177906 cites W2808646376 @default.
- W4213177906 cites W2889341738 @default.
- W4213177906 cites W2962793285 @default.
- W4213177906 cites W2963802487 @default.
- W4213177906 cites W2964153986 @default.
- W4213177906 cites W2964271799 @default.
- W4213177906 cites W2989184171 @default.
- W4213177906 cites W3003590623 @default.
- W4213177906 cites W3022867348 @default.
- W4213177906 cites W3086505308 @default.
- W4213177906 cites W3100686023 @default.
- W4213177906 cites W3126817395 @default.
- W4213177906 cites W3183476263 @default.
- W4213177906 cites W3193566312 @default.
- W4213177906 cites W4292157310 @default.
- W4213177906 cites W3015902165 @default.
- W4213177906 doi "https://doi.org/10.1016/j.knosys.2022.108350" @default.
- W4213177906 hasPublicationYear "2022" @default.
- W4213177906 type Work @default.
- W4213177906 citedByCount "8" @default.
- W4213177906 countsByYear W42131779062022 @default.
- W4213177906 countsByYear W42131779062023 @default.
- W4213177906 crossrefType "journal-article" @default.
- W4213177906 hasAuthorship W4213177906A5022154076 @default.
- W4213177906 hasAuthorship W4213177906A5034001099 @default.
- W4213177906 hasAuthorship W4213177906A5039671101 @default.
- W4213177906 hasAuthorship W4213177906A5087729203 @default.
- W4213177906 hasBestOaLocation W42131779061 @default.
- W4213177906 hasConcept C119857082 @default.
- W4213177906 hasConcept C124101348 @default.
- W4213177906 hasConcept C127313418 @default.
- W4213177906 hasConcept C138885662 @default.
- W4213177906 hasConcept C144024400 @default.
- W4213177906 hasConcept C153180895 @default.
- W4213177906 hasConcept C154945302 @default.
- W4213177906 hasConcept C162324750 @default.
- W4213177906 hasConcept C176217482 @default.
- W4213177906 hasConcept C21547014 @default.
- W4213177906 hasConcept C2776401178 @default.
- W4213177906 hasConcept C2779304628 @default.
- W4213177906 hasConcept C31510193 @default.
- W4213177906 hasConcept C32834561 @default.
- W4213177906 hasConcept C36289849 @default.
- W4213177906 hasConcept C41008148 @default.
- W4213177906 hasConcept C41895202 @default.
- W4213177906 hasConcept C62649853 @default.
- W4213177906 hasConceptScore W4213177906C119857082 @default.
- W4213177906 hasConceptScore W4213177906C124101348 @default.
- W4213177906 hasConceptScore W4213177906C127313418 @default.
- W4213177906 hasConceptScore W4213177906C138885662 @default.
- W4213177906 hasConceptScore W4213177906C144024400 @default.
- W4213177906 hasConceptScore W4213177906C153180895 @default.
- W4213177906 hasConceptScore W4213177906C154945302 @default.
- W4213177906 hasConceptScore W4213177906C162324750 @default.
- W4213177906 hasConceptScore W4213177906C176217482 @default.
- W4213177906 hasConceptScore W4213177906C21547014 @default.
- W4213177906 hasConceptScore W4213177906C2776401178 @default.
- W4213177906 hasConceptScore W4213177906C2779304628 @default.
- W4213177906 hasConceptScore W4213177906C31510193 @default.
- W4213177906 hasConceptScore W4213177906C32834561 @default.
- W4213177906 hasConceptScore W4213177906C36289849 @default.
- W4213177906 hasConceptScore W4213177906C41008148 @default.
- W4213177906 hasConceptScore W4213177906C41895202 @default.
- W4213177906 hasConceptScore W4213177906C62649853 @default.
- W4213177906 hasFunder F4320321001 @default.
- W4213177906 hasFunder F4320338141 @default.
- W4213177906 hasLocation W42131779061 @default.