Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213181144> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4213181144 endingPage "14" @default.
- W4213181144 startingPage "14" @default.
- W4213181144 abstract "One of the main challenges in developing efficient and effective winter road maintenance is to design an accurate prediction model for the road surface friction coefficient. A reliable and accurate prediction model of road surface friction coefficient can help decision support systems to significantly increase traffic safety, while saving time and cost. High dynamicity in weather and road surface conditions can lead to the presence of uncertainties in historical data extracted by sensors. To overcome this issue, this study uses an adaptive neuro-fuzzy inference system that can appropriately address uncertainty using fuzzy logic neural networks. To investigate the ability of the proposed model to predict the road surface friction coefficient, real data were measured at equal time intervals using optical sensors and road-mounted sensors. Then, the most critical features were selected based on the Pearson correlation coefficient, and the dataset was split into two independent training and test datasets. Next, the input variables were fuzzified by generating a fuzzy inference system using the fuzzy c-means clustering method. After training the model, a testing set was used to validate the trained model. The model was evaluated by means of graphical and numerical metrics. The results show that the constructed adaptive neuro-fuzzy model has an excellent ability to learn and accurately predict the road surface friction coefficient." @default.
- W4213181144 created "2022-02-24" @default.
- W4213181144 creator A5019693502 @default.
- W4213181144 creator A5027545784 @default.
- W4213181144 creator A5055943184 @default.
- W4213181144 date "2022-02-17" @default.
- W4213181144 modified "2023-09-25" @default.
- W4213181144 title "Addressing Uncertainty by Designing an Intelligent Fuzzy System to Help Decision Support Systems for Winter Road Maintenance" @default.
- W4213181144 cites W1739231958 @default.
- W4213181144 cites W1932828617 @default.
- W4213181144 cites W1987981921 @default.
- W4213181144 cites W2003167530 @default.
- W4213181144 cites W2017768180 @default.
- W4213181144 cites W2019207321 @default.
- W4213181144 cites W2057985709 @default.
- W4213181144 cites W2075787184 @default.
- W4213181144 cites W2170930582 @default.
- W4213181144 cites W2175463092 @default.
- W4213181144 cites W2762739190 @default.
- W4213181144 cites W2797631569 @default.
- W4213181144 cites W2901569361 @default.
- W4213181144 cites W2904435516 @default.
- W4213181144 cites W2926550755 @default.
- W4213181144 cites W2951871563 @default.
- W4213181144 cites W3006637824 @default.
- W4213181144 cites W3041970759 @default.
- W4213181144 cites W3104920460 @default.
- W4213181144 doi "https://doi.org/10.3390/safety8010014" @default.
- W4213181144 hasPublicationYear "2022" @default.
- W4213181144 type Work @default.
- W4213181144 citedByCount "2" @default.
- W4213181144 countsByYear W42131811442022 @default.
- W4213181144 crossrefType "journal-article" @default.
- W4213181144 hasAuthorship W4213181144A5019693502 @default.
- W4213181144 hasAuthorship W4213181144A5027545784 @default.
- W4213181144 hasAuthorship W4213181144A5055943184 @default.
- W4213181144 hasBestOaLocation W42131811441 @default.
- W4213181144 hasConcept C119857082 @default.
- W4213181144 hasConcept C124101348 @default.
- W4213181144 hasConcept C127413603 @default.
- W4213181144 hasConcept C128990827 @default.
- W4213181144 hasConcept C147176958 @default.
- W4213181144 hasConcept C154945302 @default.
- W4213181144 hasConcept C186108316 @default.
- W4213181144 hasConcept C195975749 @default.
- W4213181144 hasConcept C2780042925 @default.
- W4213181144 hasConcept C2780092901 @default.
- W4213181144 hasConcept C29470771 @default.
- W4213181144 hasConcept C41008148 @default.
- W4213181144 hasConcept C42011625 @default.
- W4213181144 hasConcept C50644808 @default.
- W4213181144 hasConcept C58166 @default.
- W4213181144 hasConceptScore W4213181144C119857082 @default.
- W4213181144 hasConceptScore W4213181144C124101348 @default.
- W4213181144 hasConceptScore W4213181144C127413603 @default.
- W4213181144 hasConceptScore W4213181144C128990827 @default.
- W4213181144 hasConceptScore W4213181144C147176958 @default.
- W4213181144 hasConceptScore W4213181144C154945302 @default.
- W4213181144 hasConceptScore W4213181144C186108316 @default.
- W4213181144 hasConceptScore W4213181144C195975749 @default.
- W4213181144 hasConceptScore W4213181144C2780042925 @default.
- W4213181144 hasConceptScore W4213181144C2780092901 @default.
- W4213181144 hasConceptScore W4213181144C29470771 @default.
- W4213181144 hasConceptScore W4213181144C41008148 @default.
- W4213181144 hasConceptScore W4213181144C42011625 @default.
- W4213181144 hasConceptScore W4213181144C50644808 @default.
- W4213181144 hasConceptScore W4213181144C58166 @default.
- W4213181144 hasFunder F4320309820 @default.
- W4213181144 hasIssue "1" @default.
- W4213181144 hasLocation W42131811441 @default.
- W4213181144 hasLocation W42131811442 @default.
- W4213181144 hasOpenAccess W4213181144 @default.
- W4213181144 hasPrimaryLocation W42131811441 @default.
- W4213181144 hasRelatedWork W1822851171 @default.
- W4213181144 hasRelatedWork W2018980971 @default.
- W4213181144 hasRelatedWork W2078755112 @default.
- W4213181144 hasRelatedWork W2135891541 @default.
- W4213181144 hasRelatedWork W2164589519 @default.
- W4213181144 hasRelatedWork W2332474383 @default.
- W4213181144 hasRelatedWork W3015687126 @default.
- W4213181144 hasRelatedWork W32657058 @default.
- W4213181144 hasRelatedWork W4310906510 @default.
- W4213181144 hasRelatedWork W591834135 @default.
- W4213181144 hasVolume "8" @default.
- W4213181144 isParatext "false" @default.
- W4213181144 isRetracted "false" @default.
- W4213181144 workType "article" @default.