Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213236543> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4213236543 abstract "Recently, deep learning methods are employed for image restoration tasks. An unsupervised learning technique is appropriate for many real time applications due to the scarcity of a large amount of data for training. The conventional deep image prior (DIP) is a CNN based denoiser prior that perform different image restoration tasks by using only a single degraded image. Alternating Direction Method of Multipliers (ADMM) framework over a standard sub-gradient method has already been proposed with DIP method. Inspired by this, we propose a variant of ADMM-DIP method for enhancing single coil magnitude magnetic resonance (MR) images. It is well known that the noise distribution in single coil magnitude MR images is stationary Rician. We achieve the Rician noise removal from single MR image by utilizing the combined effect of MSE, KL divergence and perceptual loss functions. Also, the attention guided dense upsampling network (AUNet) was engaged as the CNN denoiser prior. Our experiments on simulated MR images indicate a better performance of the proposed method. We evaluated different denoising methods both qualitatively and quantitatively." @default.
- W4213236543 created "2022-02-24" @default.
- W4213236543 creator A5005057675 @default.
- W4213236543 creator A5020197263 @default.
- W4213236543 creator A5061013081 @default.
- W4213236543 date "2021-12-15" @default.
- W4213236543 modified "2023-09-23" @default.
- W4213236543 title "ADMM based Deep Denoiser Prior for Enhancing Single Coil Magnitude MR images" @default.
- W4213236543 cites W2014940628 @default.
- W4213236543 cites W2056370875 @default.
- W4213236543 cites W2059784307 @default.
- W4213236543 cites W2073660032 @default.
- W4213236543 cites W208252763 @default.
- W4213236543 cites W2097073572 @default.
- W4213236543 cites W2099244020 @default.
- W4213236543 cites W2109577576 @default.
- W4213236543 cites W2508457857 @default.
- W4213236543 cites W2741247953 @default.
- W4213236543 cites W2743780012 @default.
- W4213236543 cites W2777741489 @default.
- W4213236543 cites W2890689055 @default.
- W4213236543 cites W2963426457 @default.
- W4213236543 cites W2989028599 @default.
- W4213236543 cites W3152685198 @default.
- W4213236543 doi "https://doi.org/10.1109/acts53447.2021.9708111" @default.
- W4213236543 hasPublicationYear "2021" @default.
- W4213236543 type Work @default.
- W4213236543 citedByCount "1" @default.
- W4213236543 countsByYear W42132365432022 @default.
- W4213236543 crossrefType "proceedings-article" @default.
- W4213236543 hasAuthorship W4213236543A5005057675 @default.
- W4213236543 hasAuthorship W4213236543A5020197263 @default.
- W4213236543 hasAuthorship W4213236543A5061013081 @default.
- W4213236543 hasConcept C106430172 @default.
- W4213236543 hasConcept C108583219 @default.
- W4213236543 hasConcept C110384440 @default.
- W4213236543 hasConcept C11413529 @default.
- W4213236543 hasConcept C115961682 @default.
- W4213236543 hasConcept C121332964 @default.
- W4213236543 hasConcept C138885662 @default.
- W4213236543 hasConcept C153180895 @default.
- W4213236543 hasConcept C154945302 @default.
- W4213236543 hasConcept C163294075 @default.
- W4213236543 hasConcept C207390915 @default.
- W4213236543 hasConcept C30403606 @default.
- W4213236543 hasConcept C31972630 @default.
- W4213236543 hasConcept C41008148 @default.
- W4213236543 hasConcept C41895202 @default.
- W4213236543 hasConcept C57273362 @default.
- W4213236543 hasConcept C60472773 @default.
- W4213236543 hasConcept C62520636 @default.
- W4213236543 hasConcept C81978471 @default.
- W4213236543 hasConcept C9417928 @default.
- W4213236543 hasConcept C99498987 @default.
- W4213236543 hasConceptScore W4213236543C106430172 @default.
- W4213236543 hasConceptScore W4213236543C108583219 @default.
- W4213236543 hasConceptScore W4213236543C110384440 @default.
- W4213236543 hasConceptScore W4213236543C11413529 @default.
- W4213236543 hasConceptScore W4213236543C115961682 @default.
- W4213236543 hasConceptScore W4213236543C121332964 @default.
- W4213236543 hasConceptScore W4213236543C138885662 @default.
- W4213236543 hasConceptScore W4213236543C153180895 @default.
- W4213236543 hasConceptScore W4213236543C154945302 @default.
- W4213236543 hasConceptScore W4213236543C163294075 @default.
- W4213236543 hasConceptScore W4213236543C207390915 @default.
- W4213236543 hasConceptScore W4213236543C30403606 @default.
- W4213236543 hasConceptScore W4213236543C31972630 @default.
- W4213236543 hasConceptScore W4213236543C41008148 @default.
- W4213236543 hasConceptScore W4213236543C41895202 @default.
- W4213236543 hasConceptScore W4213236543C57273362 @default.
- W4213236543 hasConceptScore W4213236543C60472773 @default.
- W4213236543 hasConceptScore W4213236543C62520636 @default.
- W4213236543 hasConceptScore W4213236543C81978471 @default.
- W4213236543 hasConceptScore W4213236543C9417928 @default.
- W4213236543 hasConceptScore W4213236543C99498987 @default.
- W4213236543 hasFunder F4320334771 @default.
- W4213236543 hasLocation W42132365431 @default.
- W4213236543 hasOpenAccess W4213236543 @default.
- W4213236543 hasPrimaryLocation W42132365431 @default.
- W4213236543 hasRelatedWork W1533292911 @default.
- W4213236543 hasRelatedWork W2076843379 @default.
- W4213236543 hasRelatedWork W2130228941 @default.
- W4213236543 hasRelatedWork W2132132164 @default.
- W4213236543 hasRelatedWork W2301388240 @default.
- W4213236543 hasRelatedWork W2787555990 @default.
- W4213236543 hasRelatedWork W3044651058 @default.
- W4213236543 hasRelatedWork W3049560604 @default.
- W4213236543 hasRelatedWork W3123424645 @default.
- W4213236543 hasRelatedWork W4292794826 @default.
- W4213236543 isParatext "false" @default.
- W4213236543 isRetracted "false" @default.
- W4213236543 workType "article" @default.