Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213237113> ?p ?o ?g. }
- W4213237113 endingPage "e0263248" @default.
- W4213237113 startingPage "e0263248" @default.
- W4213237113 abstract "Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, affect several million individuals worldwide. These diseases are heterogeneous at the clinical, immunological and genetic levels and result from complex host and environmental interactions. Investigating drug efficacy for IBD can improve our understanding of why treatment response can vary between patients. We propose an explainable machine learning (ML) approach that combines bioinformatics and domain insight, to integrate multi-modal data and predict inter-patient variation in drug response. Using explanation of our models, we interpret the ML models' predictions to infer unique combinations of important features associated with pharmacological responses obtained during preclinical testing of drug candidates in ex vivo patient-derived fresh tissues. Our inferred multi-modal features that are predictive of drug efficacy include multi-omic data (genomic and transcriptomic), demographic, medicinal and pharmacological data. Our aim is to understand variation in patient responses before a drug candidate moves forward to clinical trials. As a pharmacological measure of drug efficacy, we measured the reduction in the release of the inflammatory cytokine TNFα from the fresh IBD tissues in the presence/absence of test drugs. We initially explored the effects of a mitogen-activated protein kinase (MAPK) inhibitor; however, we later showed our approach can be applied to other targets, test drugs or mechanisms of interest. Our best model predicted TNFα levels from demographic, medicinal and genomic features with an error of only 4.98% on unseen patients. We incorporated transcriptomic data to validate insights from genomic features. Our results showed variations in drug effectiveness (measured by ex vivo assays) between patients that differed in gender, age or condition and linked new genetic polymorphisms to patient response variation to the anti-inflammatory treatment BIRB796 (Doramapimod). Our approach models IBD drug response while also identifying its most predictive features as part of a transparent ML precision medicine strategy." @default.
- W4213237113 created "2022-02-24" @default.
- W4213237113 creator A5012339822 @default.
- W4213237113 creator A5031263232 @default.
- W4213237113 creator A5040018442 @default.
- W4213237113 creator A5040030087 @default.
- W4213237113 creator A5043161270 @default.
- W4213237113 creator A5084050064 @default.
- W4213237113 creator A5091423852 @default.
- W4213237113 date "2022-02-23" @default.
- W4213237113 modified "2023-10-10" @default.
- W4213237113 title "Combining explainable machine learning, demographic and multi-omic data to inform precision medicine strategies for inflammatory bowel disease" @default.
- W4213237113 cites W1596210849 @default.
- W4213237113 cites W1901931884 @default.
- W4213237113 cites W1966778471 @default.
- W4213237113 cites W1967105697 @default.
- W4213237113 cites W1972827747 @default.
- W4213237113 cites W1986403099 @default.
- W4213237113 cites W1999143685 @default.
- W4213237113 cites W2000364429 @default.
- W4213237113 cites W2009980852 @default.
- W4213237113 cites W2013321787 @default.
- W4213237113 cites W2018891331 @default.
- W4213237113 cites W2040728839 @default.
- W4213237113 cites W2053889157 @default.
- W4213237113 cites W2058298068 @default.
- W4213237113 cites W2066829062 @default.
- W4213237113 cites W2075826761 @default.
- W4213237113 cites W2087726829 @default.
- W4213237113 cites W2089773406 @default.
- W4213237113 cites W2098571122 @default.
- W4213237113 cites W2108234281 @default.
- W4213237113 cites W2114104545 @default.
- W4213237113 cites W2124606330 @default.
- W4213237113 cites W2127186884 @default.
- W4213237113 cites W2131271579 @default.
- W4213237113 cites W2137537116 @default.
- W4213237113 cites W2145694215 @default.
- W4213237113 cites W2147510335 @default.
- W4213237113 cites W2151088711 @default.
- W4213237113 cites W2151237737 @default.
- W4213237113 cites W2152695523 @default.
- W4213237113 cites W2164898103 @default.
- W4213237113 cites W2166550586 @default.
- W4213237113 cites W2510875395 @default.
- W4213237113 cites W2548459112 @default.
- W4213237113 cites W2767960361 @default.
- W4213237113 cites W2888900070 @default.
- W4213237113 cites W2927511842 @default.
- W4213237113 cites W2945296140 @default.
- W4213237113 cites W2981182282 @default.
- W4213237113 cites W2981768636 @default.
- W4213237113 cites W2994640868 @default.
- W4213237113 cites W2995533571 @default.
- W4213237113 cites W3002065075 @default.
- W4213237113 cites W3031003892 @default.
- W4213237113 cites W3102476541 @default.
- W4213237113 cites W3133340472 @default.
- W4213237113 cites W3190187338 @default.
- W4213237113 cites W4239510810 @default.
- W4213237113 cites W4244895750 @default.
- W4213237113 doi "https://doi.org/10.1371/journal.pone.0263248" @default.
- W4213237113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35196350" @default.
- W4213237113 hasPublicationYear "2022" @default.
- W4213237113 type Work @default.
- W4213237113 citedByCount "10" @default.
- W4213237113 countsByYear W42132371132021 @default.
- W4213237113 countsByYear W42132371132022 @default.
- W4213237113 countsByYear W42132371132023 @default.
- W4213237113 crossrefType "journal-article" @default.
- W4213237113 hasAuthorship W4213237113A5012339822 @default.
- W4213237113 hasAuthorship W4213237113A5031263232 @default.
- W4213237113 hasAuthorship W4213237113A5040018442 @default.
- W4213237113 hasAuthorship W4213237113A5040030087 @default.
- W4213237113 hasAuthorship W4213237113A5043161270 @default.
- W4213237113 hasAuthorship W4213237113A5084050064 @default.
- W4213237113 hasAuthorship W4213237113A5091423852 @default.
- W4213237113 hasBestOaLocation W42132371131 @default.
- W4213237113 hasConcept C104317684 @default.
- W4213237113 hasConcept C119857082 @default.
- W4213237113 hasConcept C126322002 @default.
- W4213237113 hasConcept C142724271 @default.
- W4213237113 hasConcept C149172746 @default.
- W4213237113 hasConcept C150194340 @default.
- W4213237113 hasConcept C157585117 @default.
- W4213237113 hasConcept C162317418 @default.
- W4213237113 hasConcept C163763905 @default.
- W4213237113 hasConcept C2778260677 @default.
- W4213237113 hasConcept C2779134260 @default.
- W4213237113 hasConcept C2780035454 @default.
- W4213237113 hasConcept C2780479503 @default.
- W4213237113 hasConcept C41008148 @default.
- W4213237113 hasConcept C535046627 @default.
- W4213237113 hasConcept C55493867 @default.
- W4213237113 hasConcept C60644358 @default.
- W4213237113 hasConcept C70721500 @default.
- W4213237113 hasConcept C71924100 @default.
- W4213237113 hasConcept C74187038 @default.