Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213239670> ?p ?o ?g. }
- W4213239670 endingPage "120967" @default.
- W4213239670 startingPage "120967" @default.
- W4213239670 abstract "The frequent occurrence of brown tide pollution in recent years has brought great losses to the economy of coastal areas. Therefore, accurate and efficient detection of the brown tide algae cell concentration is of great significance to the prevention of marine environmental pollution. In this paper, a combination of three-dimensional fluorescence spectroscopy and generalized regression neural network is used to detect the concentration of Aureococcus anophagefferens (A. anophagefferens). Firstly, the fluorescence spectrometer was used to collect spectra of A. anophagefferens with different growth cycles and different concentrations. In order to reduce the complexity of fluorescence spectral data and improve the efficiency of model calculation, the gradient boosting decision tree (GBDT) algorithm is used to rank the importance of spectral features, and select spectral features with great importance as input and concentration of algal cells as output. In view of the nonlinear relationship between input and output, a generalized regression neural network model optimized by the improved sparrow search algorithm (FASSA-GRNN) was established to predict the concentration of algae cells, The model results show that MSE is 0.0046, MAE is 0.0569, and R2 is 0.9955. In addition, the FASSA-GRNN model is compared with the prediction results of the SSA-GRNN, GWO-GRNN, and GRNN models. The results show that the prediction accuracy of FASSA-GRNN is better than other models, and the improved sparrow search algorithm (FASSA) can reach the global optimum faster during the training process. This research provides a new method for predicting the concentration of algae cells." @default.
- W4213239670 created "2022-02-24" @default.
- W4213239670 creator A5005136491 @default.
- W4213239670 creator A5010566902 @default.
- W4213239670 creator A5030564608 @default.
- W4213239670 creator A5031263402 @default.
- W4213239670 creator A5052165621 @default.
- W4213239670 creator A5054339045 @default.
- W4213239670 creator A5091161457 @default.
- W4213239670 date "2022-05-01" @default.
- W4213239670 modified "2023-10-16" @default.
- W4213239670 title "Rapid in measurements of brown tide algae cell concentrations using fluorescence spectrometry and generalized regression neural network" @default.
- W4213239670 cites W2001621245 @default.
- W4213239670 cites W2028477480 @default.
- W4213239670 cites W2042040410 @default.
- W4213239670 cites W2072292468 @default.
- W4213239670 cites W2082371777 @default.
- W4213239670 cites W2110652111 @default.
- W4213239670 cites W2146719329 @default.
- W4213239670 cites W2232774222 @default.
- W4213239670 cites W2728802251 @default.
- W4213239670 cites W2792674377 @default.
- W4213239670 cites W2795241617 @default.
- W4213239670 cites W2799875719 @default.
- W4213239670 cites W2893011787 @default.
- W4213239670 cites W2907541065 @default.
- W4213239670 cites W2921060539 @default.
- W4213239670 cites W2972600456 @default.
- W4213239670 cites W2980751306 @default.
- W4213239670 cites W3030703790 @default.
- W4213239670 cites W3035387018 @default.
- W4213239670 cites W3116618149 @default.
- W4213239670 cites W3134034025 @default.
- W4213239670 cites W3154899968 @default.
- W4213239670 cites W3156584537 @default.
- W4213239670 cites W3162638021 @default.
- W4213239670 cites W3169193166 @default.
- W4213239670 cites W3175383956 @default.
- W4213239670 doi "https://doi.org/10.1016/j.saa.2022.120967" @default.
- W4213239670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35176645" @default.
- W4213239670 hasPublicationYear "2022" @default.
- W4213239670 type Work @default.
- W4213239670 citedByCount "5" @default.
- W4213239670 countsByYear W42132396702022 @default.
- W4213239670 countsByYear W42132396702023 @default.
- W4213239670 crossrefType "journal-article" @default.
- W4213239670 hasAuthorship W4213239670A5005136491 @default.
- W4213239670 hasAuthorship W4213239670A5010566902 @default.
- W4213239670 hasAuthorship W4213239670A5030564608 @default.
- W4213239670 hasAuthorship W4213239670A5031263402 @default.
- W4213239670 hasAuthorship W4213239670A5052165621 @default.
- W4213239670 hasAuthorship W4213239670A5054339045 @default.
- W4213239670 hasAuthorship W4213239670A5091161457 @default.
- W4213239670 hasConcept C105795698 @default.
- W4213239670 hasConcept C11413529 @default.
- W4213239670 hasConcept C119857082 @default.
- W4213239670 hasConcept C153180895 @default.
- W4213239670 hasConcept C154945302 @default.
- W4213239670 hasConcept C186060115 @default.
- W4213239670 hasConcept C18903297 @default.
- W4213239670 hasConcept C33923547 @default.
- W4213239670 hasConcept C39432304 @default.
- W4213239670 hasConcept C41008148 @default.
- W4213239670 hasConcept C50644808 @default.
- W4213239670 hasConcept C559758991 @default.
- W4213239670 hasConcept C83546350 @default.
- W4213239670 hasConcept C86803240 @default.
- W4213239670 hasConceptScore W4213239670C105795698 @default.
- W4213239670 hasConceptScore W4213239670C11413529 @default.
- W4213239670 hasConceptScore W4213239670C119857082 @default.
- W4213239670 hasConceptScore W4213239670C153180895 @default.
- W4213239670 hasConceptScore W4213239670C154945302 @default.
- W4213239670 hasConceptScore W4213239670C186060115 @default.
- W4213239670 hasConceptScore W4213239670C18903297 @default.
- W4213239670 hasConceptScore W4213239670C33923547 @default.
- W4213239670 hasConceptScore W4213239670C39432304 @default.
- W4213239670 hasConceptScore W4213239670C41008148 @default.
- W4213239670 hasConceptScore W4213239670C50644808 @default.
- W4213239670 hasConceptScore W4213239670C559758991 @default.
- W4213239670 hasConceptScore W4213239670C83546350 @default.
- W4213239670 hasConceptScore W4213239670C86803240 @default.
- W4213239670 hasLocation W42132396701 @default.
- W4213239670 hasLocation W42132396702 @default.
- W4213239670 hasOpenAccess W4213239670 @default.
- W4213239670 hasPrimaryLocation W42132396701 @default.
- W4213239670 hasRelatedWork W2022259620 @default.
- W4213239670 hasRelatedWork W2899084033 @default.
- W4213239670 hasRelatedWork W2961085424 @default.
- W4213239670 hasRelatedWork W4225307033 @default.
- W4213239670 hasRelatedWork W4285260836 @default.
- W4213239670 hasRelatedWork W4286629047 @default.
- W4213239670 hasRelatedWork W4306321456 @default.
- W4213239670 hasRelatedWork W4306674287 @default.
- W4213239670 hasRelatedWork W1629725936 @default.
- W4213239670 hasRelatedWork W4224009465 @default.
- W4213239670 hasVolume "272" @default.
- W4213239670 isParatext "false" @default.
- W4213239670 isRetracted "false" @default.