Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213254045> ?p ?o ?g. }
- W4213254045 endingPage "110285" @default.
- W4213254045 startingPage "110285" @default.
- W4213254045 abstract "Natural gas flow in shale pore systems determines the accumulation and production of shale gas. Under the conditions of reservoir, gas flow in such shale pores is significantly different from that in conventional reservoirs. Studies of gas flow under such conditions are usually limited to simple pore models with tube/slit geometries or bundle of tubes/slits, which constructs important theoretical basis, however, cannot represent the pore networks of shales. For directly simulating gas flow in complex media, we proposed a modified microscale lattice Boltzmann (MM-LB) model, in which the local effective mean free path (MFP) at any location of the pore system with complex geometry corrected by a custom two-dimensional (2D) eight-direction wall function was considered to capture the effective relaxation time for each lattice node in LB model. What's more, to consider slip velocity at solid boundaries, a combined bounce-back specular-reflection (BSR) scheme was adopted. The MM-LB model was firstly validated in 2D pore systems with simple slit/channel geometries and complex geometries (square and triangular cylinder flows) and in a 3D Sierpinski carpet, where good agreements with linearized Boltzmann solutions, molecular dynamics (MD) simulation and the direct simulation BGK (DSBGK) method results were found. Using the MM-LB model, we quantified the end effect on gas flow through pore throat and found that the end effect is caused by not only the streaming bending but also the variance of MFP (i.e., viscosity) throughout the pore throat. Finally, we applied this model to simulate shale gas flow in three digital reconstructions of kerogen pore systems and compared the results of apparent permeability prediction with Klinkenberg model and Beskok-Karniadakis (B–K) model. It is showed that the apparent permeability of gas flow in shales decreases with the decrease of temperature or the increase of pressure, and the pressure has a greater effect than temperature. For similar pore structures, the apparent permeability increases with the width of pore body and pore throat, especially the pore throat, which dominates the overall flow velocity of the entire flow field. According to the comparison and analysis of the results of MM-LB model with Klinkenberg and B–K model, it can be inferred that permeability prediction based on models of tube/slit (or bundle of tube/slit) pores misestimate the apparent permeability due to ignoring the connectivity and the end effect, especially for the conditions of lower pressures and nanoscale pore spaces." @default.
- W4213254045 created "2022-02-24" @default.
- W4213254045 creator A5003971166 @default.
- W4213254045 creator A5012673624 @default.
- W4213254045 creator A5021942138 @default.
- W4213254045 creator A5029603796 @default.
- W4213254045 creator A5034901890 @default.
- W4213254045 creator A5081057106 @default.
- W4213254045 date "2022-05-01" @default.
- W4213254045 modified "2023-10-02" @default.
- W4213254045 title "Modified LB model for simulation of gas flow in shale pore systems by introducing end effects and local effective mean free path" @default.
- W4213254045 cites W1621971109 @default.
- W4213254045 cites W162289950 @default.
- W4213254045 cites W1653172998 @default.
- W4213254045 cites W1899009607 @default.
- W4213254045 cites W1966799339 @default.
- W4213254045 cites W1975222998 @default.
- W4213254045 cites W1984415510 @default.
- W4213254045 cites W1986752469 @default.
- W4213254045 cites W1987336547 @default.
- W4213254045 cites W1992893263 @default.
- W4213254045 cites W1996460793 @default.
- W4213254045 cites W1997903381 @default.
- W4213254045 cites W2007283787 @default.
- W4213254045 cites W2019006773 @default.
- W4213254045 cites W2030914908 @default.
- W4213254045 cites W2031164753 @default.
- W4213254045 cites W2051338499 @default.
- W4213254045 cites W2061074914 @default.
- W4213254045 cites W2062900651 @default.
- W4213254045 cites W2064135738 @default.
- W4213254045 cites W2064708863 @default.
- W4213254045 cites W2073790407 @default.
- W4213254045 cites W2078013861 @default.
- W4213254045 cites W2078482718 @default.
- W4213254045 cites W2079431344 @default.
- W4213254045 cites W2080794937 @default.
- W4213254045 cites W2087334784 @default.
- W4213254045 cites W2090927148 @default.
- W4213254045 cites W2100201447 @default.
- W4213254045 cites W2112264486 @default.
- W4213254045 cites W2114693935 @default.
- W4213254045 cites W2144311271 @default.
- W4213254045 cites W2152133194 @default.
- W4213254045 cites W2167108735 @default.
- W4213254045 cites W2178937831 @default.
- W4213254045 cites W2226595659 @default.
- W4213254045 cites W2228854202 @default.
- W4213254045 cites W2238301106 @default.
- W4213254045 cites W2288026044 @default.
- W4213254045 cites W2324811117 @default.
- W4213254045 cites W2411105989 @default.
- W4213254045 cites W2511063201 @default.
- W4213254045 cites W2555455282 @default.
- W4213254045 cites W2607623373 @default.
- W4213254045 cites W2753458421 @default.
- W4213254045 cites W2794352120 @default.
- W4213254045 cites W2897012057 @default.
- W4213254045 cites W2935107132 @default.
- W4213254045 cites W2963127029 @default.
- W4213254045 cites W2969464266 @default.
- W4213254045 cites W3036158453 @default.
- W4213254045 cites W3047994812 @default.
- W4213254045 cites W3107613681 @default.
- W4213254045 cites W3167351411 @default.
- W4213254045 cites W3199449034 @default.
- W4213254045 cites W806454302 @default.
- W4213254045 doi "https://doi.org/10.1016/j.petrol.2022.110285" @default.
- W4213254045 hasPublicationYear "2022" @default.
- W4213254045 type Work @default.
- W4213254045 citedByCount "4" @default.
- W4213254045 countsByYear W42132540452023 @default.
- W4213254045 crossrefType "journal-article" @default.
- W4213254045 hasAuthorship W4213254045A5003971166 @default.
- W4213254045 hasAuthorship W4213254045A5012673624 @default.
- W4213254045 hasAuthorship W4213254045A5021942138 @default.
- W4213254045 hasAuthorship W4213254045A5029603796 @default.
- W4213254045 hasAuthorship W4213254045A5034901890 @default.
- W4213254045 hasAuthorship W4213254045A5081057106 @default.
- W4213254045 hasConcept C121332964 @default.
- W4213254045 hasConcept C185592680 @default.
- W4213254045 hasConcept C21821499 @default.
- W4213254045 hasConcept C57879066 @default.
- W4213254045 hasConceptScore W4213254045C121332964 @default.
- W4213254045 hasConceptScore W4213254045C185592680 @default.
- W4213254045 hasConceptScore W4213254045C21821499 @default.
- W4213254045 hasConceptScore W4213254045C57879066 @default.
- W4213254045 hasLocation W42132540451 @default.
- W4213254045 hasOpenAccess W4213254045 @default.
- W4213254045 hasPrimaryLocation W42132540451 @default.
- W4213254045 hasRelatedWork W2005538531 @default.
- W4213254045 hasRelatedWork W2037706818 @default.
- W4213254045 hasRelatedWork W2039519617 @default.
- W4213254045 hasRelatedWork W2191038573 @default.
- W4213254045 hasRelatedWork W2342130824 @default.
- W4213254045 hasRelatedWork W2348714619 @default.
- W4213254045 hasRelatedWork W2604957073 @default.
- W4213254045 hasRelatedWork W2765598921 @default.