Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213270457> ?p ?o ?g. }
- W4213270457 endingPage "179" @default.
- W4213270457 startingPage "153" @default.
- W4213270457 abstract "Because white matter hyperintensities (WMHs) are associated with many different types of brain disease or disorders, they need to be detected as early as possible. Accurate detection of WMHs occurring in the brain is important for physicians to decide on the appropriate treatment method and to determine the type, location, size, and boundary detection of the pathologic case with high accuracy. This study proposes a mask region-based convolutional neural network method for the automatic detection of WMHs on magnetic resonance (MR) scans. Three datasets, one of which is specific to this study and two of which are given publicly available, are provided for experimental studies. As a result of test set in the study, multiple sclerosis lesions and brain tumors are successfully detected on MR slices with a high mean average precision score of 0.94. In addition, precision and the Dice similarity coefficient have scores as 0.86 and 0.82, respectively." @default.
- W4213270457 created "2022-02-24" @default.
- W4213270457 creator A5034457762 @default.
- W4213270457 creator A5089174398 @default.
- W4213270457 date "2022-01-01" @default.
- W4213270457 modified "2023-10-06" @default.
- W4213270457 title "Automatic detection of white matter hyperintensities via mask region-based convolutional neural networks using magnetic resonance images" @default.
- W4213270457 cites W1679094666 @default.
- W4213270457 cites W1880647531 @default.
- W4213270457 cites W1922119240 @default.
- W4213270457 cites W1979691956 @default.
- W4213270457 cites W1981714036 @default.
- W4213270457 cites W1985912112 @default.
- W4213270457 cites W1987869189 @default.
- W4213270457 cites W2005810979 @default.
- W4213270457 cites W2017146561 @default.
- W4213270457 cites W2032867662 @default.
- W4213270457 cites W2040810382 @default.
- W4213270457 cites W2043595836 @default.
- W4213270457 cites W2045515039 @default.
- W4213270457 cites W2056600158 @default.
- W4213270457 cites W2057161346 @default.
- W4213270457 cites W2059589385 @default.
- W4213270457 cites W2065757781 @default.
- W4213270457 cites W2065765450 @default.
- W4213270457 cites W2075501272 @default.
- W4213270457 cites W2077033394 @default.
- W4213270457 cites W2081295822 @default.
- W4213270457 cites W2083927153 @default.
- W4213270457 cites W2085829822 @default.
- W4213270457 cites W2085909714 @default.
- W4213270457 cites W2102848905 @default.
- W4213270457 cites W2108583379 @default.
- W4213270457 cites W2110764733 @default.
- W4213270457 cites W2111027459 @default.
- W4213270457 cites W2111405917 @default.
- W4213270457 cites W2112796928 @default.
- W4213270457 cites W2117735874 @default.
- W4213270457 cites W2121497273 @default.
- W4213270457 cites W2125065061 @default.
- W4213270457 cites W2126817449 @default.
- W4213270457 cites W2146712216 @default.
- W4213270457 cites W2148538425 @default.
- W4213270457 cites W2220454601 @default.
- W4213270457 cites W2292956239 @default.
- W4213270457 cites W2309640507 @default.
- W4213270457 cites W2330931383 @default.
- W4213270457 cites W2471406153 @default.
- W4213270457 cites W2513585288 @default.
- W4213270457 cites W2532750509 @default.
- W4213270457 cites W2589663521 @default.
- W4213270457 cites W2598068240 @default.
- W4213270457 cites W2624092670 @default.
- W4213270457 cites W2732197575 @default.
- W4213270457 cites W2745892997 @default.
- W4213270457 cites W2761545065 @default.
- W4213270457 cites W2787769342 @default.
- W4213270457 cites W2789256791 @default.
- W4213270457 cites W2789628513 @default.
- W4213270457 cites W2789656921 @default.
- W4213270457 cites W2799452775 @default.
- W4213270457 cites W2801099543 @default.
- W4213270457 cites W2914871691 @default.
- W4213270457 cites W2953151638 @default.
- W4213270457 cites W2963076262 @default.
- W4213270457 cites W2972036806 @default.
- W4213270457 cites W2996022260 @default.
- W4213270457 cites W3047291779 @default.
- W4213270457 cites W3083847135 @default.
- W4213270457 cites W3100315682 @default.
- W4213270457 cites W3129988033 @default.
- W4213270457 cites W3156976445 @default.
- W4213270457 cites W4240347348 @default.
- W4213270457 cites W639708223 @default.
- W4213270457 doi "https://doi.org/10.1016/b978-0-12-824145-5.00006-x" @default.
- W4213270457 hasPublicationYear "2022" @default.
- W4213270457 type Work @default.
- W4213270457 citedByCount "1" @default.
- W4213270457 countsByYear W42132704572023 @default.
- W4213270457 crossrefType "book-chapter" @default.
- W4213270457 hasAuthorship W4213270457A5034457762 @default.
- W4213270457 hasAuthorship W4213270457A5089174398 @default.
- W4213270457 hasConcept C103278499 @default.
- W4213270457 hasConcept C115961682 @default.
- W4213270457 hasConcept C126838900 @default.
- W4213270457 hasConcept C143409427 @default.
- W4213270457 hasConcept C146638467 @default.
- W4213270457 hasConcept C153180895 @default.
- W4213270457 hasConcept C154945302 @default.
- W4213270457 hasConcept C2781192897 @default.
- W4213270457 hasConcept C41008148 @default.
- W4213270457 hasConcept C71924100 @default.
- W4213270457 hasConcept C81363708 @default.
- W4213270457 hasConceptScore W4213270457C103278499 @default.
- W4213270457 hasConceptScore W4213270457C115961682 @default.
- W4213270457 hasConceptScore W4213270457C126838900 @default.
- W4213270457 hasConceptScore W4213270457C143409427 @default.
- W4213270457 hasConceptScore W4213270457C146638467 @default.