Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213275769> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4213275769 endingPage "11" @default.
- W4213275769 startingPage "1" @default.
- W4213275769 abstract "Building segmentation is an important step in urban planning and development. In this work, we propose a new deep learning model, namely Multidimension Attention U-Net (MDAU-Net), to accurately segment building pixels and nonbuilding pixels in remote sensing images. Furthermore, we introduce a novel Multidimension Modified Efficient Channel Attention (MD-MECA) model to enhance the network discriminative ability through considering the interdependence between feature maps. Through deepening the U-Net model to a seven-story structure, the ability to identify the building is enhanced. We apply MD-MECA to the “skip connections” in traditional U-Net, instead of simply copying the feature mapping of the contraction path to the matching extension path, to optimize the feature transfer more efficiently. The obtained results show that our proposed MDAU-Net framework achieves the most advanced performance on publicly available building data sets (i.e. the precision over the Massachusetts buildings data set and WHU data set are 97.04% and 95.68%, respectively). Furthermore, we observed that the proposed framework outperforms several state-of-the-art approaches." @default.
- W4213275769 created "2022-02-24" @default.
- W4213275769 creator A5019706829 @default.
- W4213275769 creator A5065869211 @default.
- W4213275769 creator A5083975558 @default.
- W4213275769 date "2022-02-21" @default.
- W4213275769 modified "2023-09-28" @default.
- W4213275769 title "U-Net: A Smart Application with Multidimensional Attention Network for Remote Sensing Images" @default.
- W4213275769 cites W1901129140 @default.
- W4213275769 cites W1903029394 @default.
- W4213275769 cites W1990517717 @default.
- W4213275769 cites W2618530766 @default.
- W4213275769 cites W2752782242 @default.
- W4213275769 cites W2908320224 @default.
- W4213275769 cites W2929921519 @default.
- W4213275769 cites W2963881378 @default.
- W4213275769 cites W2970370255 @default.
- W4213275769 cites W2990136631 @default.
- W4213275769 cites W3001668482 @default.
- W4213275769 cites W3004081379 @default.
- W4213275769 cites W3034552520 @default.
- W4213275769 cites W3037587714 @default.
- W4213275769 cites W3048447490 @default.
- W4213275769 cites W3106860957 @default.
- W4213275769 cites W3122259118 @default.
- W4213275769 cites W3131917064 @default.
- W4213275769 cites W3162490984 @default.
- W4213275769 cites W3193349278 @default.
- W4213275769 cites W3202291808 @default.
- W4213275769 cites W4206480668 @default.
- W4213275769 doi "https://doi.org/10.1155/2022/1603273" @default.
- W4213275769 hasPublicationYear "2022" @default.
- W4213275769 type Work @default.
- W4213275769 citedByCount "9" @default.
- W4213275769 countsByYear W42132757692020 @default.
- W4213275769 countsByYear W42132757692022 @default.
- W4213275769 crossrefType "journal-article" @default.
- W4213275769 hasAuthorship W4213275769A5019706829 @default.
- W4213275769 hasAuthorship W4213275769A5065869211 @default.
- W4213275769 hasAuthorship W4213275769A5083975558 @default.
- W4213275769 hasBestOaLocation W42132757691 @default.
- W4213275769 hasConcept C124101348 @default.
- W4213275769 hasConcept C138885662 @default.
- W4213275769 hasConcept C14166107 @default.
- W4213275769 hasConcept C153180895 @default.
- W4213275769 hasConcept C154945302 @default.
- W4213275769 hasConcept C160633673 @default.
- W4213275769 hasConcept C2524010 @default.
- W4213275769 hasConcept C2776401178 @default.
- W4213275769 hasConcept C2777735758 @default.
- W4213275769 hasConcept C31258907 @default.
- W4213275769 hasConcept C33923547 @default.
- W4213275769 hasConcept C41008148 @default.
- W4213275769 hasConcept C41895202 @default.
- W4213275769 hasConcept C89600930 @default.
- W4213275769 hasConcept C97931131 @default.
- W4213275769 hasConceptScore W4213275769C124101348 @default.
- W4213275769 hasConceptScore W4213275769C138885662 @default.
- W4213275769 hasConceptScore W4213275769C14166107 @default.
- W4213275769 hasConceptScore W4213275769C153180895 @default.
- W4213275769 hasConceptScore W4213275769C154945302 @default.
- W4213275769 hasConceptScore W4213275769C160633673 @default.
- W4213275769 hasConceptScore W4213275769C2524010 @default.
- W4213275769 hasConceptScore W4213275769C2776401178 @default.
- W4213275769 hasConceptScore W4213275769C2777735758 @default.
- W4213275769 hasConceptScore W4213275769C31258907 @default.
- W4213275769 hasConceptScore W4213275769C33923547 @default.
- W4213275769 hasConceptScore W4213275769C41008148 @default.
- W4213275769 hasConceptScore W4213275769C41895202 @default.
- W4213275769 hasConceptScore W4213275769C89600930 @default.
- W4213275769 hasConceptScore W4213275769C97931131 @default.
- W4213275769 hasLocation W42132757691 @default.
- W4213275769 hasLocation W42132757692 @default.
- W4213275769 hasOpenAccess W4213275769 @default.
- W4213275769 hasPrimaryLocation W42132757691 @default.
- W4213275769 hasRelatedWork W2024160000 @default.
- W4213275769 hasRelatedWork W2061273563 @default.
- W4213275769 hasRelatedWork W2136485282 @default.
- W4213275769 hasRelatedWork W2285052147 @default.
- W4213275769 hasRelatedWork W2546871836 @default.
- W4213275769 hasRelatedWork W2729514902 @default.
- W4213275769 hasRelatedWork W2743258233 @default.
- W4213275769 hasRelatedWork W2773500201 @default.
- W4213275769 hasRelatedWork W2970216048 @default.
- W4213275769 hasRelatedWork W4287995534 @default.
- W4213275769 hasVolume "2022" @default.
- W4213275769 isParatext "false" @default.
- W4213275769 isRetracted "false" @default.
- W4213275769 workType "article" @default.