Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213292895> ?p ?o ?g. }
- W4213292895 endingPage "375" @default.
- W4213292895 startingPage "375" @default.
- W4213292895 abstract "Recently, global energy consumption has increased due to industrial development, resulting in increasing demand for various energy sources. Aside from the increased demand for renewable energy resources, the demand for fossil fuels is also on the rise. Accordingly, the demand for resource development in the deep sea is also increasing. Various systems are required to efficiently develop resources in the deep sea. A study on an in-line type oil–water separator is needed to compensate for the disadvantages of a gravity separator that separates traditional water and oil. In this paper, the separation performance of the axial-flow oil–water separator for five design variables (conical diameter, conical length, number of vanes, angle of vane, and thickness of vane) was analyzed. Numerical calculations for multiphase fluid were performed using the mixture model, one of the Euler–Euler approaches. Additionally, the Reynolds stress model was used to describe the swirling flow. As a result, it was found that the effect on the separation performance was large in the order of angle of vane, conical diameter, number of vanes, the thickness of vane, and conical length. A neural network model for predicting separation performance was developed using numerical calculation results. To predict the oil–water separation performance, five design parameters were considered, and the evaluation of the separation performance prediction model was compared with the multilinear regression (MLR) model. As a result, it was found that the R square was improved by about 74.0% in the neural network model, compared with the MLR model." @default.
- W4213292895 created "2022-02-24" @default.
- W4213292895 creator A5020006012 @default.
- W4213292895 creator A5032012437 @default.
- W4213292895 creator A5049020114 @default.
- W4213292895 date "2022-02-16" @default.
- W4213292895 modified "2023-10-03" @default.
- W4213292895 title "The Prediction of Separation Performance of an In-Line Axial Oil–Water Separator Using Machine Learning and CFD" @default.
- W4213292895 cites W1753986636 @default.
- W4213292895 cites W1965094989 @default.
- W4213292895 cites W1976028596 @default.
- W4213292895 cites W1981469768 @default.
- W4213292895 cites W1981701712 @default.
- W4213292895 cites W1993569410 @default.
- W4213292895 cites W1994044665 @default.
- W4213292895 cites W1994514773 @default.
- W4213292895 cites W1997189158 @default.
- W4213292895 cites W2005825070 @default.
- W4213292895 cites W2024823956 @default.
- W4213292895 cites W2028850090 @default.
- W4213292895 cites W2029179474 @default.
- W4213292895 cites W2030136363 @default.
- W4213292895 cites W2032350365 @default.
- W4213292895 cites W2039906857 @default.
- W4213292895 cites W2047330282 @default.
- W4213292895 cites W2063191781 @default.
- W4213292895 cites W2067508040 @default.
- W4213292895 cites W2069618809 @default.
- W4213292895 cites W2070371175 @default.
- W4213292895 cites W2100315503 @default.
- W4213292895 cites W2153492345 @default.
- W4213292895 cites W2158425175 @default.
- W4213292895 cites W2265818288 @default.
- W4213292895 cites W2278504361 @default.
- W4213292895 cites W2520401090 @default.
- W4213292895 cites W2773233464 @default.
- W4213292895 cites W2895401153 @default.
- W4213292895 cites W2904127409 @default.
- W4213292895 cites W2972864519 @default.
- W4213292895 cites W2978292925 @default.
- W4213292895 cites W2994675471 @default.
- W4213292895 cites W2999506245 @default.
- W4213292895 cites W3026276949 @default.
- W4213292895 cites W3094576866 @default.
- W4213292895 cites W3127948757 @default.
- W4213292895 cites W3171125496 @default.
- W4213292895 cites W4249517230 @default.
- W4213292895 doi "https://doi.org/10.3390/pr10020375" @default.
- W4213292895 hasPublicationYear "2022" @default.
- W4213292895 type Work @default.
- W4213292895 citedByCount "3" @default.
- W4213292895 countsByYear W42132928952022 @default.
- W4213292895 countsByYear W42132928952023 @default.
- W4213292895 crossrefType "journal-article" @default.
- W4213292895 hasAuthorship W4213292895A5020006012 @default.
- W4213292895 hasAuthorship W4213292895A5032012437 @default.
- W4213292895 hasAuthorship W4213292895A5049020114 @default.
- W4213292895 hasBestOaLocation W42132928951 @default.
- W4213292895 hasConcept C121332964 @default.
- W4213292895 hasConcept C124961601 @default.
- W4213292895 hasConcept C127413603 @default.
- W4213292895 hasConcept C154945302 @default.
- W4213292895 hasConcept C185004128 @default.
- W4213292895 hasConcept C39432304 @default.
- W4213292895 hasConcept C41008148 @default.
- W4213292895 hasConcept C50644808 @default.
- W4213292895 hasConcept C57879066 @default.
- W4213292895 hasConcept C78519656 @default.
- W4213292895 hasConcept C78762247 @default.
- W4213292895 hasConcept C97355855 @default.
- W4213292895 hasConceptScore W4213292895C121332964 @default.
- W4213292895 hasConceptScore W4213292895C124961601 @default.
- W4213292895 hasConceptScore W4213292895C127413603 @default.
- W4213292895 hasConceptScore W4213292895C154945302 @default.
- W4213292895 hasConceptScore W4213292895C185004128 @default.
- W4213292895 hasConceptScore W4213292895C39432304 @default.
- W4213292895 hasConceptScore W4213292895C41008148 @default.
- W4213292895 hasConceptScore W4213292895C50644808 @default.
- W4213292895 hasConceptScore W4213292895C57879066 @default.
- W4213292895 hasConceptScore W4213292895C78519656 @default.
- W4213292895 hasConceptScore W4213292895C78762247 @default.
- W4213292895 hasConceptScore W4213292895C97355855 @default.
- W4213292895 hasIssue "2" @default.
- W4213292895 hasLocation W42132928951 @default.
- W4213292895 hasLocation W42132928952 @default.
- W4213292895 hasOpenAccess W4213292895 @default.
- W4213292895 hasPrimaryLocation W42132928951 @default.
- W4213292895 hasRelatedWork W1517296071 @default.
- W4213292895 hasRelatedWork W2063487995 @default.
- W4213292895 hasRelatedWork W2331387757 @default.
- W4213292895 hasRelatedWork W2384639605 @default.
- W4213292895 hasRelatedWork W2899084033 @default.
- W4213292895 hasRelatedWork W4230411006 @default.
- W4213292895 hasRelatedWork W4280514708 @default.
- W4213292895 hasRelatedWork W4365520401 @default.
- W4213292895 hasRelatedWork W4366780340 @default.
- W4213292895 hasRelatedWork W583417274 @default.
- W4213292895 hasVolume "10" @default.