Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213303523> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4213303523 abstract "In this article we are interested in the stability of finite difference schemes approximation for hyperbolic boundary value problems defined on the interval <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket 0 comma 1 right-bracket> <mml:semantics> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>left [0,1 right ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The seminal work of Gustafsson, Kreiss, and Sundström [Math. Comp. 26 (1972), pp. 649-686], mainly devoted to the half-line, gives a necessary and sufficient invertibility condition ensuring the stability of the scheme, the so-called discrete uniform Kreiss-Lopatinskii condition. An interesting point is that this condition is a discretized version of the one imposed in the continuous setting to ensure the strong well-posedness of the hyperbolic boundary value problem. However as pointed by Gustafsson, Kreiss, and Sundström [Math. Comp. 26 (1972), pp. 649-686] and as soon as several boundary conditions are concerned the solution to the scheme may develop an exponential growth with respect to the discrete time variable. The question addressed here is to characterize the schemes having this growth or not. This is made under a new invertibility condition which is a discretized version of the ones preventing the exponential growth in time of the solution to continuous hyperbolic boundary value problems in the strip studied by Benoit [Indiana Univ. Math. J. 69 (2020), pp. 2267-2323]. In some sense it shows that this continuous to discrete extension of the characterization occurs in the interval like in the half-line." @default.
- W4213303523 created "2022-02-24" @default.
- W4213303523 creator A5052529038 @default.
- W4213303523 date "2021-12-03" @default.
- W4213303523 modified "2023-09-30" @default.
- W4213303523 title "Stability of finite difference schemes approximation for hyperbolic boundary value problems in an interval" @default.
- W4213303523 cites W1989917862 @default.
- W4213303523 cites W2004993859 @default.
- W4213303523 cites W2087867100 @default.
- W4213303523 cites W2129388579 @default.
- W4213303523 cites W2903163286 @default.
- W4213303523 cites W2963460263 @default.
- W4213303523 cites W2994324903 @default.
- W4213303523 cites W3112761535 @default.
- W4213303523 cites W4235209130 @default.
- W4213303523 cites W4236836032 @default.
- W4213303523 cites W4238203199 @default.
- W4213303523 cites W4241540387 @default.
- W4213303523 cites W4246175847 @default.
- W4213303523 doi "https://doi.org/10.1090/mcom/3698" @default.
- W4213303523 hasPublicationYear "2021" @default.
- W4213303523 type Work @default.
- W4213303523 citedByCount "0" @default.
- W4213303523 crossrefType "journal-article" @default.
- W4213303523 hasAuthorship W4213303523A5052529038 @default.
- W4213303523 hasBestOaLocation W42133035231 @default.
- W4213303523 hasConcept C112972136 @default.
- W4213303523 hasConcept C11413529 @default.
- W4213303523 hasConcept C114614502 @default.
- W4213303523 hasConcept C119857082 @default.
- W4213303523 hasConcept C134306372 @default.
- W4213303523 hasConcept C182310444 @default.
- W4213303523 hasConcept C2778067643 @default.
- W4213303523 hasConcept C2778112365 @default.
- W4213303523 hasConcept C28826006 @default.
- W4213303523 hasConcept C33923547 @default.
- W4213303523 hasConcept C41008148 @default.
- W4213303523 hasConcept C54355233 @default.
- W4213303523 hasConcept C62354387 @default.
- W4213303523 hasConcept C73000952 @default.
- W4213303523 hasConcept C86803240 @default.
- W4213303523 hasConceptScore W4213303523C112972136 @default.
- W4213303523 hasConceptScore W4213303523C11413529 @default.
- W4213303523 hasConceptScore W4213303523C114614502 @default.
- W4213303523 hasConceptScore W4213303523C119857082 @default.
- W4213303523 hasConceptScore W4213303523C134306372 @default.
- W4213303523 hasConceptScore W4213303523C182310444 @default.
- W4213303523 hasConceptScore W4213303523C2778067643 @default.
- W4213303523 hasConceptScore W4213303523C2778112365 @default.
- W4213303523 hasConceptScore W4213303523C28826006 @default.
- W4213303523 hasConceptScore W4213303523C33923547 @default.
- W4213303523 hasConceptScore W4213303523C41008148 @default.
- W4213303523 hasConceptScore W4213303523C54355233 @default.
- W4213303523 hasConceptScore W4213303523C62354387 @default.
- W4213303523 hasConceptScore W4213303523C73000952 @default.
- W4213303523 hasConceptScore W4213303523C86803240 @default.
- W4213303523 hasFunder F4320320883 @default.
- W4213303523 hasLocation W42133035231 @default.
- W4213303523 hasLocation W42133035232 @default.
- W4213303523 hasLocation W42133035233 @default.
- W4213303523 hasOpenAccess W4213303523 @default.
- W4213303523 hasPrimaryLocation W42133035231 @default.
- W4213303523 hasRelatedWork W1601553145 @default.
- W4213303523 hasRelatedWork W1979076981 @default.
- W4213303523 hasRelatedWork W2014311204 @default.
- W4213303523 hasRelatedWork W2052109794 @default.
- W4213303523 hasRelatedWork W2055911971 @default.
- W4213303523 hasRelatedWork W2057106870 @default.
- W4213303523 hasRelatedWork W2086928224 @default.
- W4213303523 hasRelatedWork W2551300110 @default.
- W4213303523 hasRelatedWork W4210327724 @default.
- W4213303523 hasRelatedWork W4230750191 @default.
- W4213303523 isParatext "false" @default.
- W4213303523 isRetracted "false" @default.
- W4213303523 workType "article" @default.