Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213304700> ?p ?o ?g. }
- W4213304700 endingPage "113915" @default.
- W4213304700 startingPage "113915" @default.
- W4213304700 abstract "For Civil Engineering System Structural Health Monitoring (SHM), damage identification is typically based on the observation of appropriate response features. A commonly selected feature is the variation of modal frequency due to its high sensitivity to global damage. However, this parameter also has a high sensitivity to variables unrelated to damage, such as the weather and the structure’s usage. This article focuses on the application of Recurrent Neural Networks (RNN) with Long-Short Term Memory (LSTM) blocks to modal tracking in medium-rise buildings, a case study for which there is very little literature despite being one of the most common building types in urban areas. RNN with LSTM blocks are trained to characterize the environmental trend in the modal frequency to identify the most critical variables and to develop models than can be used to detect changes of state or damage. The models are fed with the recent history of the external temperature, sun position and the modal frequency itself. The performance of these models is evaluated in two different ways: for a variable size of the training set of real data and for scenarios with segments in which the modal response is not known at all instants, a typical situation in real structures. A practical application of this approach in a real medium-rise building is presented, showing that these models are capable of capturing with high precision the annual evolution of the modal frequency and performing well even on a daily scale, making it suitable for damage detection. For the cases in which the modal response is regularly identified and tracked, the characterization has a high performance when tracking single modal frequency or several frequencies with a single model. The models are robust for periods where data is not available but quickly deteriorate if this period extends for several days." @default.
- W4213304700 created "2022-02-24" @default.
- W4213304700 creator A5019666317 @default.
- W4213304700 creator A5036265625 @default.
- W4213304700 creator A5045148687 @default.
- W4213304700 creator A5076459798 @default.
- W4213304700 date "2022-04-01" @default.
- W4213304700 modified "2023-09-23" @default.
- W4213304700 title "Characterization of the modal response using Deep recurrent neural networks" @default.
- W4213304700 cites W1498436455 @default.
- W4213304700 cites W1930168503 @default.
- W4213304700 cites W1977220071 @default.
- W4213304700 cites W1988115241 @default.
- W4213304700 cites W2007132721 @default.
- W4213304700 cites W2010625308 @default.
- W4213304700 cites W2014650835 @default.
- W4213304700 cites W2017892188 @default.
- W4213304700 cites W2035039243 @default.
- W4213304700 cites W2064675550 @default.
- W4213304700 cites W2075662398 @default.
- W4213304700 cites W2076063813 @default.
- W4213304700 cites W2087784802 @default.
- W4213304700 cites W2089467804 @default.
- W4213304700 cites W2098677588 @default.
- W4213304700 cites W2109563136 @default.
- W4213304700 cites W2112084106 @default.
- W4213304700 cites W2120356561 @default.
- W4213304700 cites W2137983211 @default.
- W4213304700 cites W2160642098 @default.
- W4213304700 cites W2169900910 @default.
- W4213304700 cites W2170511188 @default.
- W4213304700 cites W2214144394 @default.
- W4213304700 cites W2464330859 @default.
- W4213304700 cites W2509233813 @default.
- W4213304700 cites W2524532377 @default.
- W4213304700 cites W2778199868 @default.
- W4213304700 cites W2807042118 @default.
- W4213304700 cites W2883691150 @default.
- W4213304700 cites W2885520844 @default.
- W4213304700 cites W2888622540 @default.
- W4213304700 cites W2895760214 @default.
- W4213304700 cites W2896251600 @default.
- W4213304700 cites W2898347655 @default.
- W4213304700 cites W2921461116 @default.
- W4213304700 cites W3019613471 @default.
- W4213304700 cites W3021993674 @default.
- W4213304700 cites W31162189 @default.
- W4213304700 cites W3133396173 @default.
- W4213304700 doi "https://doi.org/10.1016/j.engstruct.2022.113915" @default.
- W4213304700 hasPublicationYear "2022" @default.
- W4213304700 type Work @default.
- W4213304700 citedByCount "3" @default.
- W4213304700 countsByYear W42133047002022 @default.
- W4213304700 countsByYear W42133047002023 @default.
- W4213304700 crossrefType "journal-article" @default.
- W4213304700 hasAuthorship W4213304700A5019666317 @default.
- W4213304700 hasAuthorship W4213304700A5036265625 @default.
- W4213304700 hasAuthorship W4213304700A5045148687 @default.
- W4213304700 hasAuthorship W4213304700A5076459798 @default.
- W4213304700 hasConcept C104286136 @default.
- W4213304700 hasConcept C108583219 @default.
- W4213304700 hasConcept C116834253 @default.
- W4213304700 hasConcept C119857082 @default.
- W4213304700 hasConcept C127413603 @default.
- W4213304700 hasConcept C135628077 @default.
- W4213304700 hasConcept C138885662 @default.
- W4213304700 hasConcept C147168706 @default.
- W4213304700 hasConcept C154945302 @default.
- W4213304700 hasConcept C177264268 @default.
- W4213304700 hasConcept C185592680 @default.
- W4213304700 hasConcept C188027245 @default.
- W4213304700 hasConcept C199360897 @default.
- W4213304700 hasConcept C21200559 @default.
- W4213304700 hasConcept C24326235 @default.
- W4213304700 hasConcept C2776247918 @default.
- W4213304700 hasConcept C2776401178 @default.
- W4213304700 hasConcept C2778827112 @default.
- W4213304700 hasConcept C41008148 @default.
- W4213304700 hasConcept C41895202 @default.
- W4213304700 hasConcept C50644808 @default.
- W4213304700 hasConcept C59822182 @default.
- W4213304700 hasConcept C66938386 @default.
- W4213304700 hasConcept C71139939 @default.
- W4213304700 hasConcept C86803240 @default.
- W4213304700 hasConceptScore W4213304700C104286136 @default.
- W4213304700 hasConceptScore W4213304700C108583219 @default.
- W4213304700 hasConceptScore W4213304700C116834253 @default.
- W4213304700 hasConceptScore W4213304700C119857082 @default.
- W4213304700 hasConceptScore W4213304700C127413603 @default.
- W4213304700 hasConceptScore W4213304700C135628077 @default.
- W4213304700 hasConceptScore W4213304700C138885662 @default.
- W4213304700 hasConceptScore W4213304700C147168706 @default.
- W4213304700 hasConceptScore W4213304700C154945302 @default.
- W4213304700 hasConceptScore W4213304700C177264268 @default.
- W4213304700 hasConceptScore W4213304700C185592680 @default.
- W4213304700 hasConceptScore W4213304700C188027245 @default.
- W4213304700 hasConceptScore W4213304700C199360897 @default.
- W4213304700 hasConceptScore W4213304700C21200559 @default.