Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213304745> ?p ?o ?g. }
- W4213304745 endingPage "2136" @default.
- W4213304745 startingPage "2136" @default.
- W4213304745 abstract "Pillars are important structural elements that provide temporary or permanent support in underground spaces. Unstable pillars can result in rock sloughing leading to roof collapse, and they can also cause rock burst. Hence, the prediction of underground pillar stability is important. This paper presents a novel application of Logistic Model Trees (LMT) to predict underground pillar stability. Seven parameters-pillar width, pillar height, ratio of pillar width to height, uniaxial compressive strength of rock, average pillar stress, underground depth, and Bord width-are employed to construct LMTs for rock and coal pillars. The LogitBoost algorithm is applied to train on two data sets of rock and coal pillar case histories. The two models are validated with (i) 10-fold cross-validation and with (ii) another set of new case histories. Results suggest that the accuracy of the proposed LMT is the highest among other common machine learning methods previously employed in the literature. Moreover, a sensitivity analysis indicates that the average stress, p, and the ratio of pillar width to height, r, are the most influential parameters for the proposed models." @default.
- W4213304745 created "2022-02-24" @default.
- W4213304745 creator A5008907206 @default.
- W4213304745 creator A5031810848 @default.
- W4213304745 creator A5049075839 @default.
- W4213304745 creator A5063271702 @default.
- W4213304745 date "2022-02-14" @default.
- W4213304745 modified "2023-10-02" @default.
- W4213304745 title "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees" @default.
- W4213304745 cites W1974888427 @default.
- W4213304745 cites W1981039744 @default.
- W4213304745 cites W1999470637 @default.
- W4213304745 cites W2010930285 @default.
- W4213304745 cites W2012118327 @default.
- W4213304745 cites W2014014123 @default.
- W4213304745 cites W2020459573 @default.
- W4213304745 cites W2024046085 @default.
- W4213304745 cites W2025318624 @default.
- W4213304745 cites W2040584032 @default.
- W4213304745 cites W2053154970 @default.
- W4213304745 cites W2059990988 @default.
- W4213304745 cites W2062769685 @default.
- W4213304745 cites W2065179947 @default.
- W4213304745 cites W2070914278 @default.
- W4213304745 cites W2071660580 @default.
- W4213304745 cites W2077507741 @default.
- W4213304745 cites W2092950528 @default.
- W4213304745 cites W2101179235 @default.
- W4213304745 cites W2126365332 @default.
- W4213304745 cites W2158698691 @default.
- W4213304745 cites W2405873376 @default.
- W4213304745 cites W2511634359 @default.
- W4213304745 cites W2567326027 @default.
- W4213304745 cites W2618481419 @default.
- W4213304745 cites W2921093430 @default.
- W4213304745 cites W2974111272 @default.
- W4213304745 cites W2975780942 @default.
- W4213304745 cites W2983599988 @default.
- W4213304745 cites W3000426442 @default.
- W4213304745 cites W3023943971 @default.
- W4213304745 cites W3035975001 @default.
- W4213304745 cites W3045409946 @default.
- W4213304745 cites W3098791139 @default.
- W4213304745 cites W3209294725 @default.
- W4213304745 cites W581820307 @default.
- W4213304745 doi "https://doi.org/10.3390/ijerph19042136" @default.
- W4213304745 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35206322" @default.
- W4213304745 hasPublicationYear "2022" @default.
- W4213304745 type Work @default.
- W4213304745 citedByCount "3" @default.
- W4213304745 countsByYear W42133047452023 @default.
- W4213304745 crossrefType "journal-article" @default.
- W4213304745 hasAuthorship W4213304745A5008907206 @default.
- W4213304745 hasAuthorship W4213304745A5031810848 @default.
- W4213304745 hasAuthorship W4213304745A5049075839 @default.
- W4213304745 hasAuthorship W4213304745A5063271702 @default.
- W4213304745 hasBestOaLocation W42133047451 @default.
- W4213304745 hasConcept C105289051 @default.
- W4213304745 hasConcept C112972136 @default.
- W4213304745 hasConcept C119857082 @default.
- W4213304745 hasConcept C127313418 @default.
- W4213304745 hasConcept C127413603 @default.
- W4213304745 hasConcept C16674752 @default.
- W4213304745 hasConcept C187320778 @default.
- W4213304745 hasConcept C2776748203 @default.
- W4213304745 hasConcept C41008148 @default.
- W4213304745 hasConcept C66938386 @default.
- W4213304745 hasConceptScore W4213304745C105289051 @default.
- W4213304745 hasConceptScore W4213304745C112972136 @default.
- W4213304745 hasConceptScore W4213304745C119857082 @default.
- W4213304745 hasConceptScore W4213304745C127313418 @default.
- W4213304745 hasConceptScore W4213304745C127413603 @default.
- W4213304745 hasConceptScore W4213304745C16674752 @default.
- W4213304745 hasConceptScore W4213304745C187320778 @default.
- W4213304745 hasConceptScore W4213304745C2776748203 @default.
- W4213304745 hasConceptScore W4213304745C41008148 @default.
- W4213304745 hasConceptScore W4213304745C66938386 @default.
- W4213304745 hasFunder F4320323708 @default.
- W4213304745 hasIssue "4" @default.
- W4213304745 hasLocation W42133047451 @default.
- W4213304745 hasLocation W42133047452 @default.
- W4213304745 hasLocation W42133047453 @default.
- W4213304745 hasLocation W42133047454 @default.
- W4213304745 hasOpenAccess W4213304745 @default.
- W4213304745 hasPrimaryLocation W42133047451 @default.
- W4213304745 hasRelatedWork W1510490065 @default.
- W4213304745 hasRelatedWork W2063385698 @default.
- W4213304745 hasRelatedWork W2302459711 @default.
- W4213304745 hasRelatedWork W2371913159 @default.
- W4213304745 hasRelatedWork W2372683849 @default.
- W4213304745 hasRelatedWork W2373103938 @default.
- W4213304745 hasRelatedWork W2393732321 @default.
- W4213304745 hasRelatedWork W3119811537 @default.
- W4213304745 hasRelatedWork W4240262195 @default.
- W4213304745 hasRelatedWork W4300817470 @default.
- W4213304745 hasVolume "19" @default.
- W4213304745 isParatext "false" @default.
- W4213304745 isRetracted "false" @default.