Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213307769> ?p ?o ?g. }
- W4213307769 abstract "Object detection on hardware platforms plays a very significant role in developing driver assistance systems (DASs) with limited computational resources. Object detection for DAS is a multiclass detection problem that involves detecting various objects like cars, auto, traffic lights, bicycles, pedestrians, etc. DAS also requires accuracy, speed, and sensitivity for detecting these objects in various challenging conditions. The lighting and weather conditions pose a serious challenge for accurate object detection for DAS. This paper proposes a speed-efficient and lightweight fully convolutional neural network (CNN) architecture for object detection in adverse rainy conditions. The proposed architecture uses a CNN-based deraining network with a custom SSIM loss function in the object detection pipeline, which can give an accurate performance using limited computational and memory resources. The object detection architecture contains some architectural modifications to the existing single shot multibox detector (SSD) architecture to make it more hardware efficient and improve accuracy on small objects. It uses a trainable color transformation module using [Formula: see text] convolutions for handling the adverse lighting conditions encountered in DAS. The architecture uses feature fusion and the dilated convolution approach to enhance the accuracy of the proposed architecture on small objects. The datasets available for object detection in DAS are very imbalanced with cars as a predominant object. The class weight penalization technique is used to improve the performance of the architecture on scarcely present objects. The performance of the architecture is evaluated on well-known datasets like Kitti, Udacity, Indian Driving Dataset (IDD), and DAWN. The architecture achieves satisfactory performance in terms of mean average precision (mAP) and detection time on all these datasets. It requires three times fewer hardware resources compared to existing architectures. The lightweight nature of the proposed architecture and modification of CNN architecture with TensorRT allow the efficient implementation on the jetson nanohardware platform for prototyping, which can be integrated with other intelligent transportation systems." @default.
- W4213307769 created "2022-02-24" @default.
- W4213307769 creator A5085870484 @default.
- W4213307769 creator A5086927803 @default.
- W4213307769 date "2022-04-06" @default.
- W4213307769 modified "2023-09-27" @default.
- W4213307769 title "Lightweight Hardware Architecture for Object Detection in Driver Assistance Systems" @default.
- W4213307769 cites W1536680647 @default.
- W4213307769 cites W1976056157 @default.
- W4213307769 cites W1992825118 @default.
- W4213307769 cites W2054604489 @default.
- W4213307769 cites W2088049833 @default.
- W4213307769 cites W2096933452 @default.
- W4213307769 cites W2111227709 @default.
- W4213307769 cites W2121396509 @default.
- W4213307769 cites W2122596619 @default.
- W4213307769 cites W2133665775 @default.
- W4213307769 cites W2150066425 @default.
- W4213307769 cites W2161969291 @default.
- W4213307769 cites W2168356304 @default.
- W4213307769 cites W2183182206 @default.
- W4213307769 cites W2194775991 @default.
- W4213307769 cites W2209874411 @default.
- W4213307769 cites W2418033038 @default.
- W4213307769 cites W2466666260 @default.
- W4213307769 cites W2490270993 @default.
- W4213307769 cites W2509784253 @default.
- W4213307769 cites W2570343428 @default.
- W4213307769 cites W2613034492 @default.
- W4213307769 cites W2740982616 @default.
- W4213307769 cites W2777170053 @default.
- W4213307769 cites W2802292981 @default.
- W4213307769 cites W2901870313 @default.
- W4213307769 cites W2914530686 @default.
- W4213307769 cites W2963037989 @default.
- W4213307769 cites W2963150697 @default.
- W4213307769 cites W2963163009 @default.
- W4213307769 cites W2963351448 @default.
- W4213307769 cites W2964267765 @default.
- W4213307769 cites W2997604048 @default.
- W4213307769 cites W3015615481 @default.
- W4213307769 cites W3016627243 @default.
- W4213307769 cites W3101938591 @default.
- W4213307769 cites W3103964093 @default.
- W4213307769 cites W3106250896 @default.
- W4213307769 cites W3113175648 @default.
- W4213307769 cites W3203198074 @default.
- W4213307769 cites W7746136 @default.
- W4213307769 doi "https://doi.org/10.1142/s0218001422500276" @default.
- W4213307769 hasPublicationYear "2022" @default.
- W4213307769 type Work @default.
- W4213307769 citedByCount "0" @default.
- W4213307769 crossrefType "journal-article" @default.
- W4213307769 hasAuthorship W4213307769A5085870484 @default.
- W4213307769 hasAuthorship W4213307769A5086927803 @default.
- W4213307769 hasConcept C123657996 @default.
- W4213307769 hasConcept C138885662 @default.
- W4213307769 hasConcept C142362112 @default.
- W4213307769 hasConcept C153180895 @default.
- W4213307769 hasConcept C153349607 @default.
- W4213307769 hasConcept C154945302 @default.
- W4213307769 hasConcept C199360897 @default.
- W4213307769 hasConcept C2776151529 @default.
- W4213307769 hasConcept C2776401178 @default.
- W4213307769 hasConcept C2781238097 @default.
- W4213307769 hasConcept C31972630 @default.
- W4213307769 hasConcept C41008148 @default.
- W4213307769 hasConcept C41895202 @default.
- W4213307769 hasConcept C43521106 @default.
- W4213307769 hasConcept C45347329 @default.
- W4213307769 hasConcept C50644808 @default.
- W4213307769 hasConcept C76155785 @default.
- W4213307769 hasConcept C79403827 @default.
- W4213307769 hasConcept C81363708 @default.
- W4213307769 hasConcept C94915269 @default.
- W4213307769 hasConceptScore W4213307769C123657996 @default.
- W4213307769 hasConceptScore W4213307769C138885662 @default.
- W4213307769 hasConceptScore W4213307769C142362112 @default.
- W4213307769 hasConceptScore W4213307769C153180895 @default.
- W4213307769 hasConceptScore W4213307769C153349607 @default.
- W4213307769 hasConceptScore W4213307769C154945302 @default.
- W4213307769 hasConceptScore W4213307769C199360897 @default.
- W4213307769 hasConceptScore W4213307769C2776151529 @default.
- W4213307769 hasConceptScore W4213307769C2776401178 @default.
- W4213307769 hasConceptScore W4213307769C2781238097 @default.
- W4213307769 hasConceptScore W4213307769C31972630 @default.
- W4213307769 hasConceptScore W4213307769C41008148 @default.
- W4213307769 hasConceptScore W4213307769C41895202 @default.
- W4213307769 hasConceptScore W4213307769C43521106 @default.
- W4213307769 hasConceptScore W4213307769C45347329 @default.
- W4213307769 hasConceptScore W4213307769C50644808 @default.
- W4213307769 hasConceptScore W4213307769C76155785 @default.
- W4213307769 hasConceptScore W4213307769C79403827 @default.
- W4213307769 hasConceptScore W4213307769C81363708 @default.
- W4213307769 hasConceptScore W4213307769C94915269 @default.
- W4213307769 hasIssue "07" @default.
- W4213307769 hasLocation W42133077691 @default.
- W4213307769 hasOpenAccess W4213307769 @default.
- W4213307769 hasPrimaryLocation W42133077691 @default.
- W4213307769 hasRelatedWork W1837097281 @default.