Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213309434> ?p ?o ?g. }
- W4213309434 abstract "Abstract Reliable ultra-short-term and short-term wind speed forecasting is pivotal for clean energy development and grid operation planning. During the wind forecasting process, decomposing the measured wind speed into data with different frequencies is a solution for overcoming the nonlinearity and the randomness of the natural wind. Existing forecasting methods, a hybrid method based on empirical mode decomposition and the back propagation neural network optimized by genetic algorithm (EMD-GA-BPNN), rely on partial decomposing the measured wind speed into data with different frequencies and subsequently achieving forecasting results from machine learning algorithms. However, such method can roughly divide IMF signals in different frequency domains, but each frequency domain contains signals with multiple frequencies. The condition reflects that the method cannot fully distinguish wind speed into data with different frequencies and thus it compromises the forecasting accuracy. A complete decomposition of measured wind speed can reduce the complexity of machine learning algorithm, and has become a useful approach for precise simulations of wind speed. Here, we propose a novel hybrid method (CEEMDAN-GA-BPNN) based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) by completely decomposing the measured wind speed. The decomposition results are put into the back propagation neural network optimized by genetic algorithm (GA-BPNN), and the final forecasting results are achieved by combining all the output values by GA-BPNN for each decomposition result from CEEMDAN. We benchmark the forecasting accuracy of the proposed hybrid method against EMD-GA-BPNN integrated by EMD and GA-BPNN. From a wind farm case in Yunnan Province, China, both for ultra-short-term forecasting (15 minutes) and short-term forecasting (1 hour), the performance of the proposed method exceeds EMD-GA-BPNN in several criteria, including root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R 2 ). The forecasting accuracy in decomposed components of low frequencies outperform components of high and middle frequencies. Fine improvement of the error metric (in percentage) in ultra-short-term/short-term forecasting is found by the complete decomposition method CEEMDAN-GA-BPNN: RMSE (7.0% and 8.6%), MAE (7.41% and 7.9%), MAPE (11.0% and 8.7%), and R 2 (2.2% and 11.0%), compared with the incomplete decomposing method EMD-GA-BPNN. Our result suggests that CEEMDAN-GA-BPNN could be an accurate wind speed forecasting tool for wind farms development and intelligent grid operations." @default.
- W4213309434 created "2022-02-24" @default.
- W4213309434 creator A5017947172 @default.
- W4213309434 creator A5023914008 @default.
- W4213309434 creator A5038609315 @default.
- W4213309434 creator A5050834753 @default.
- W4213309434 creator A5061121049 @default.
- W4213309434 creator A5089598371 @default.
- W4213309434 date "2022-02-18" @default.
- W4213309434 modified "2023-09-28" @default.
- W4213309434 title "A Hybrid Ultra-short-term and Short-term Wind Speed Forecasting Method based on CEEMDAN and GA-BPNN" @default.
- W4213309434 cites W1498436455 @default.
- W4213309434 cites W1970978817 @default.
- W4213309434 cites W1977784344 @default.
- W4213309434 cites W2007221293 @default.
- W4213309434 cites W2053668232 @default.
- W4213309434 cites W2061196949 @default.
- W4213309434 cites W2127842029 @default.
- W4213309434 cites W2127925682 @default.
- W4213309434 cites W2242027171 @default.
- W4213309434 cites W2329476579 @default.
- W4213309434 cites W2491896098 @default.
- W4213309434 cites W2536008880 @default.
- W4213309434 cites W2581822685 @default.
- W4213309434 cites W2586888681 @default.
- W4213309434 cites W2626166063 @default.
- W4213309434 cites W2731024278 @default.
- W4213309434 cites W2750973274 @default.
- W4213309434 cites W2766852097 @default.
- W4213309434 cites W2769156605 @default.
- W4213309434 cites W2775797427 @default.
- W4213309434 cites W2793427052 @default.
- W4213309434 cites W2801503429 @default.
- W4213309434 cites W2884415573 @default.
- W4213309434 cites W2896614541 @default.
- W4213309434 cites W2900921197 @default.
- W4213309434 cites W2908908405 @default.
- W4213309434 cites W2910279921 @default.
- W4213309434 cites W2912032242 @default.
- W4213309434 cites W2944436518 @default.
- W4213309434 cites W2977398569 @default.
- W4213309434 cites W2979841977 @default.
- W4213309434 cites W2983509179 @default.
- W4213309434 cites W2989725176 @default.
- W4213309434 cites W2996058680 @default.
- W4213309434 cites W3002254277 @default.
- W4213309434 cites W3003714201 @default.
- W4213309434 cites W3005209402 @default.
- W4213309434 cites W3007211815 @default.
- W4213309434 cites W3015799856 @default.
- W4213309434 cites W3031449124 @default.
- W4213309434 cites W3033320417 @default.
- W4213309434 cites W3039344276 @default.
- W4213309434 cites W3087568108 @default.
- W4213309434 cites W3090533267 @default.
- W4213309434 cites W3095115669 @default.
- W4213309434 cites W3108680670 @default.
- W4213309434 cites W3112613839 @default.
- W4213309434 cites W4250503569 @default.
- W4213309434 doi "https://doi.org/10.1175/waf-d-21-0047.1" @default.
- W4213309434 hasPublicationYear "2022" @default.
- W4213309434 type Work @default.
- W4213309434 citedByCount "2" @default.
- W4213309434 countsByYear W42133094342022 @default.
- W4213309434 crossrefType "journal-article" @default.
- W4213309434 hasAuthorship W4213309434A5017947172 @default.
- W4213309434 hasAuthorship W4213309434A5023914008 @default.
- W4213309434 hasAuthorship W4213309434A5038609315 @default.
- W4213309434 hasAuthorship W4213309434A5050834753 @default.
- W4213309434 hasAuthorship W4213309434A5061121049 @default.
- W4213309434 hasAuthorship W4213309434A5089598371 @default.
- W4213309434 hasBestOaLocation W42133094341 @default.
- W4213309434 hasConcept C105795698 @default.
- W4213309434 hasConcept C106131492 @default.
- W4213309434 hasConcept C11413529 @default.
- W4213309434 hasConcept C115961682 @default.
- W4213309434 hasConcept C119599485 @default.
- W4213309434 hasConcept C119857082 @default.
- W4213309434 hasConcept C121332964 @default.
- W4213309434 hasConcept C125112378 @default.
- W4213309434 hasConcept C127413603 @default.
- W4213309434 hasConcept C13280743 @default.
- W4213309434 hasConcept C153294291 @default.
- W4213309434 hasConcept C154945302 @default.
- W4213309434 hasConcept C155032097 @default.
- W4213309434 hasConcept C161067210 @default.
- W4213309434 hasConcept C185798385 @default.
- W4213309434 hasConcept C205649164 @default.
- W4213309434 hasConcept C25570617 @default.
- W4213309434 hasConcept C31972630 @default.
- W4213309434 hasConcept C33923547 @default.
- W4213309434 hasConcept C41008148 @default.
- W4213309434 hasConcept C50644808 @default.
- W4213309434 hasConcept C61797465 @default.
- W4213309434 hasConcept C62520636 @default.
- W4213309434 hasConcept C78600449 @default.
- W4213309434 hasConcept C8880873 @default.
- W4213309434 hasConcept C99498987 @default.
- W4213309434 hasConceptScore W4213309434C105795698 @default.
- W4213309434 hasConceptScore W4213309434C106131492 @default.