Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213318441> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4213318441 endingPage "12" @default.
- W4213318441 startingPage "1" @default.
- W4213318441 abstract "In recent years, as a new subject in the computer field, artificial intelligence has developed rapidly, especially in reinforcement learning (RL) and deep reinforcement learning. Combined with the characteristics of Software Defined Network (SDN) for centralized control and scheduling, resource scheduling based on artificial intelligence becomes possible. However, the current SDN routing algorithm has the problem of low link utilization and is unable to update and adjust according to the real-time network status. This paper aims to address these problems by proposing a reinforcement learning-based multipath routing for SDN (RLMR) scheme. RLMR uses Markov Decision Process (MDP) and Q-Learning for training. Based on the real-time information of network state and flow characteristics, RLMR performs routing for different flows. When there is no link that meets the bandwidth requirements, the remaining flows are redistributed according to the Quality of Service (QoS) priority to complete the multipath routing. In addition, this paper defines the forward efficiency (FE) to measure the link bandwidth utilization (LBU) under multipath routing. Simulation results show that compared with the current mainstream shortest path algorithm and ECMP algorithm, the routing algorithm in RLMR has advantages in FE, jitter, and packet loss rate. It can effectively improve the efficiency and quality of routing." @default.
- W4213318441 created "2022-02-24" @default.
- W4213318441 creator A5002785069 @default.
- W4213318441 creator A5014854995 @default.
- W4213318441 creator A5037431705 @default.
- W4213318441 creator A5065179165 @default.
- W4213318441 creator A5071863861 @default.
- W4213318441 date "2022-02-18" @default.
- W4213318441 modified "2023-10-14" @default.
- W4213318441 title "RLMR: Reinforcement Learning Based Multipath Routing for SDN" @default.
- W4213318441 cites W1571328821 @default.
- W4213318441 cites W1971678403 @default.
- W4213318441 cites W2007111180 @default.
- W4213318441 cites W2094677112 @default.
- W4213318441 cites W2116917711 @default.
- W4213318441 cites W2533586856 @default.
- W4213318441 cites W2734500456 @default.
- W4213318441 cites W2753412869 @default.
- W4213318441 cites W2898231005 @default.
- W4213318441 cites W2942476636 @default.
- W4213318441 cites W2994779073 @default.
- W4213318441 cites W3088546124 @default.
- W4213318441 cites W3198385338 @default.
- W4213318441 doi "https://doi.org/10.1155/2022/5124960" @default.
- W4213318441 hasPublicationYear "2022" @default.
- W4213318441 type Work @default.
- W4213318441 citedByCount "3" @default.
- W4213318441 countsByYear W42133184412022 @default.
- W4213318441 countsByYear W42133184412023 @default.
- W4213318441 crossrefType "journal-article" @default.
- W4213318441 hasAuthorship W4213318441A5002785069 @default.
- W4213318441 hasAuthorship W4213318441A5014854995 @default.
- W4213318441 hasAuthorship W4213318441A5037431705 @default.
- W4213318441 hasAuthorship W4213318441A5065179165 @default.
- W4213318441 hasAuthorship W4213318441A5071863861 @default.
- W4213318441 hasBestOaLocation W42133184411 @default.
- W4213318441 hasConcept C104954878 @default.
- W4213318441 hasConcept C115443555 @default.
- W4213318441 hasConcept C120314980 @default.
- W4213318441 hasConcept C154945302 @default.
- W4213318441 hasConcept C188116033 @default.
- W4213318441 hasConcept C196423136 @default.
- W4213318441 hasConcept C204948658 @default.
- W4213318441 hasConcept C29436982 @default.
- W4213318441 hasConcept C31258907 @default.
- W4213318441 hasConcept C41008148 @default.
- W4213318441 hasConcept C74172769 @default.
- W4213318441 hasConcept C76522221 @default.
- W4213318441 hasConcept C89305328 @default.
- W4213318441 hasConcept C9659607 @default.
- W4213318441 hasConcept C97541855 @default.
- W4213318441 hasConceptScore W4213318441C104954878 @default.
- W4213318441 hasConceptScore W4213318441C115443555 @default.
- W4213318441 hasConceptScore W4213318441C120314980 @default.
- W4213318441 hasConceptScore W4213318441C154945302 @default.
- W4213318441 hasConceptScore W4213318441C188116033 @default.
- W4213318441 hasConceptScore W4213318441C196423136 @default.
- W4213318441 hasConceptScore W4213318441C204948658 @default.
- W4213318441 hasConceptScore W4213318441C29436982 @default.
- W4213318441 hasConceptScore W4213318441C31258907 @default.
- W4213318441 hasConceptScore W4213318441C41008148 @default.
- W4213318441 hasConceptScore W4213318441C74172769 @default.
- W4213318441 hasConceptScore W4213318441C76522221 @default.
- W4213318441 hasConceptScore W4213318441C89305328 @default.
- W4213318441 hasConceptScore W4213318441C9659607 @default.
- W4213318441 hasConceptScore W4213318441C97541855 @default.
- W4213318441 hasFunder F4320321001 @default.
- W4213318441 hasLocation W42133184411 @default.
- W4213318441 hasLocation W42133184412 @default.
- W4213318441 hasOpenAccess W4213318441 @default.
- W4213318441 hasPrimaryLocation W42133184411 @default.
- W4213318441 hasRelatedWork W103514590 @default.
- W4213318441 hasRelatedWork W1561162933 @default.
- W4213318441 hasRelatedWork W1966208750 @default.
- W4213318441 hasRelatedWork W1997091564 @default.
- W4213318441 hasRelatedWork W2081964190 @default.
- W4213318441 hasRelatedWork W2102655743 @default.
- W4213318441 hasRelatedWork W2144081597 @default.
- W4213318441 hasRelatedWork W2336965019 @default.
- W4213318441 hasRelatedWork W2607223747 @default.
- W4213318441 hasRelatedWork W1968523244 @default.
- W4213318441 hasVolume "2022" @default.
- W4213318441 isParatext "false" @default.
- W4213318441 isRetracted "false" @default.
- W4213318441 workType "article" @default.