Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213325942> ?p ?o ?g. }
- W4213325942 endingPage "516" @default.
- W4213325942 startingPage "516" @default.
- W4213325942 abstract "Reference crop evapotranspiration (ETo) is an important component of the hydrological cycle that is used for water resource planning, irrigation, and agricultural management, as well as in other hydrological processes. The aim of this study was to estimate the ETo based on limited meteorological data using an artificial neural network (ANN) method. The daily data of minimum temperature (Tmin), maximum temperature (Tmax), mean temperature (Tmean), solar radiation (SR), humidity (H), wind speed (WS), sunshine hours (Ssh), maximum global radiation (gradmax), minimum global radiation (gradmin), day length, and ETo data were obtained over the long-term period from 1969 to 2019. The analysed data were divided into two parts from 1969 to 2007 and from 2008 to 2019 for model training and testing, respectively. The optimal ANN for forecasting ETo included Tmax, Tmin, H, and SR at hidden layers (4, 3); gradmin, SR, and WS at (6, 4); SR, day length, Ssh, and Tmean at (3, 2); all collected parameters at hidden layer (5, 4). The results showed different alternative methods for estimation of ETo in case of a lack of climate data with high performance. Models using ANN can help promote the decision-making for water managers, designers, and development planners." @default.
- W4213325942 created "2022-02-24" @default.
- W4213325942 creator A5002057312 @default.
- W4213325942 creator A5015863713 @default.
- W4213325942 creator A5021771514 @default.
- W4213325942 creator A5031726573 @default.
- W4213325942 creator A5034050392 @default.
- W4213325942 creator A5034754548 @default.
- W4213325942 creator A5040654669 @default.
- W4213325942 creator A5048950085 @default.
- W4213325942 creator A5051503580 @default.
- W4213325942 creator A5059823880 @default.
- W4213325942 creator A5062668227 @default.
- W4213325942 creator A5088853821 @default.
- W4213325942 date "2022-02-18" @default.
- W4213325942 modified "2023-10-09" @default.
- W4213325942 title "Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method" @default.
- W4213325942 cites W1972641521 @default.
- W4213325942 cites W1973396676 @default.
- W4213325942 cites W2010778044 @default.
- W4213325942 cites W2021004044 @default.
- W4213325942 cites W2021184758 @default.
- W4213325942 cites W2030038391 @default.
- W4213325942 cites W2060980971 @default.
- W4213325942 cites W2065227926 @default.
- W4213325942 cites W2074082212 @default.
- W4213325942 cites W2079753076 @default.
- W4213325942 cites W2088135986 @default.
- W4213325942 cites W2093286138 @default.
- W4213325942 cites W2112500358 @default.
- W4213325942 cites W2121864785 @default.
- W4213325942 cites W2132011749 @default.
- W4213325942 cites W2144296276 @default.
- W4213325942 cites W2146948209 @default.
- W4213325942 cites W2278548164 @default.
- W4213325942 cites W2328793014 @default.
- W4213325942 cites W2408924173 @default.
- W4213325942 cites W2412312882 @default.
- W4213325942 cites W2420402877 @default.
- W4213325942 cites W2473287073 @default.
- W4213325942 cites W2512426578 @default.
- W4213325942 cites W2523027065 @default.
- W4213325942 cites W2530317826 @default.
- W4213325942 cites W2550199573 @default.
- W4213325942 cites W2594797697 @default.
- W4213325942 cites W2598701004 @default.
- W4213325942 cites W2755648886 @default.
- W4213325942 cites W2762236289 @default.
- W4213325942 cites W2765900141 @default.
- W4213325942 cites W2769923112 @default.
- W4213325942 cites W2776240795 @default.
- W4213325942 cites W2791067104 @default.
- W4213325942 cites W2795493439 @default.
- W4213325942 cites W2809391731 @default.
- W4213325942 cites W2904637639 @default.
- W4213325942 cites W2915755045 @default.
- W4213325942 cites W2921189400 @default.
- W4213325942 cites W2968910527 @default.
- W4213325942 cites W3006741599 @default.
- W4213325942 cites W3007048219 @default.
- W4213325942 cites W3014648180 @default.
- W4213325942 cites W3015852769 @default.
- W4213325942 cites W3015956474 @default.
- W4213325942 cites W3016654606 @default.
- W4213325942 cites W3017458656 @default.
- W4213325942 cites W3025676872 @default.
- W4213325942 cites W3030428089 @default.
- W4213325942 cites W3031110504 @default.
- W4213325942 cites W3034490789 @default.
- W4213325942 cites W3036166564 @default.
- W4213325942 cites W3037961787 @default.
- W4213325942 cites W3048040632 @default.
- W4213325942 cites W3088751638 @default.
- W4213325942 cites W3097694004 @default.
- W4213325942 cites W3097821145 @default.
- W4213325942 cites W3102587316 @default.
- W4213325942 cites W3132201516 @default.
- W4213325942 cites W3134957427 @default.
- W4213325942 cites W3165571190 @default.
- W4213325942 cites W3171904223 @default.
- W4213325942 cites W3175012816 @default.
- W4213325942 cites W3193897125 @default.
- W4213325942 cites W4212895629 @default.
- W4213325942 doi "https://doi.org/10.3390/agronomy12020516" @default.
- W4213325942 hasPublicationYear "2022" @default.
- W4213325942 type Work @default.
- W4213325942 citedByCount "29" @default.
- W4213325942 countsByYear W42133259422022 @default.
- W4213325942 countsByYear W42133259422023 @default.
- W4213325942 crossrefType "journal-article" @default.
- W4213325942 hasAuthorship W4213325942A5002057312 @default.
- W4213325942 hasAuthorship W4213325942A5015863713 @default.
- W4213325942 hasAuthorship W4213325942A5021771514 @default.
- W4213325942 hasAuthorship W4213325942A5031726573 @default.
- W4213325942 hasAuthorship W4213325942A5034050392 @default.
- W4213325942 hasAuthorship W4213325942A5034754548 @default.
- W4213325942 hasAuthorship W4213325942A5040654669 @default.
- W4213325942 hasAuthorship W4213325942A5048950085 @default.