Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213329542> ?p ?o ?g. }
- W4213329542 abstract "Neural-network-based algorithms have garnered considerable attention for their ability to learn complex patterns from very-high-dimensional data sets towards classifying complex long-range patterns of entanglement and correlations in many-body quantum systems, and towards processing high-dimensional classical data sets. Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets. A particularly interesting class of algorithms, the quantum convolutional neural networks (QCNNs) could learn features of a quantum data set by performing a binary classification task on a nontrivial phase of quantum matter. Inspired by this promise, we present a generalization of QCNN, the ``branching quantum convolutional neural network,'' or bQCNN, with substantially higher expressibility. A key feature of bQCNN is that it leverages midcircuit (intermediate) measurement results, realizable on several current quantum devices, obtained in pooling layers to determine which sets of parameters will be used in the subsequent convolutional layers of the circuit. This results in a ``branching'' structure, which allows for a greater number of trainable variational parameters in a given circuit depth. This is of particular use in current-day noisy intermediate-scale quantum devices, where circuit depth is limited by gate noise. We present an overview of the Ansatz structure and scaling and provide evidence of its enhanced expressibility compared with QCNN. Using artificially constructed large data sets of training states as a proof of concept, we demonstrate the existence of training tasks in which bQCNN far outperforms an ordinary QCNN. We provide an explicit example of such a task in the recognition of the transition from a symmetry protected topological to a trivial phase induced by multiple, distinct perturbations. Finally, we present future directions where the classical branching structure and increased density of trainable parameters in bQCNN would be particularly valuable." @default.
- W4213329542 created "2022-02-24" @default.
- W4213329542 creator A5020387669 @default.
- W4213329542 creator A5028162758 @default.
- W4213329542 creator A5040780838 @default.
- W4213329542 creator A5080023418 @default.
- W4213329542 creator A5084164080 @default.
- W4213329542 date "2022-02-14" @default.
- W4213329542 modified "2023-10-05" @default.
- W4213329542 title "Branching quantum convolutional neural networks" @default.
- W4213329542 cites W1901616594 @default.
- W4213329542 cites W2003656163 @default.
- W4213329542 cites W2045702468 @default.
- W4213329542 cites W2103956991 @default.
- W4213329542 cites W2257937122 @default.
- W4213329542 cites W2419175238 @default.
- W4213329542 cites W2516533688 @default.
- W4213329542 cites W2559394418 @default.
- W4213329542 cites W2560386163 @default.
- W4213329542 cites W2582157661 @default.
- W4213329542 cites W2736592352 @default.
- W4213329542 cites W2781738013 @default.
- W4213329542 cites W2792315573 @default.
- W4213329542 cites W2792946961 @default.
- W4213329542 cites W2794444783 @default.
- W4213329542 cites W2796293949 @default.
- W4213329542 cites W2798434869 @default.
- W4213329542 cites W2884430236 @default.
- W4213329542 cites W2896712926 @default.
- W4213329542 cites W2919115771 @default.
- W4213329542 cites W2941137921 @default.
- W4213329542 cites W3096532729 @default.
- W4213329542 cites W3100843411 @default.
- W4213329542 cites W3100993774 @default.
- W4213329542 cites W3101427288 @default.
- W4213329542 cites W3103558166 @default.
- W4213329542 cites W3103713775 @default.
- W4213329542 cites W3105870134 @default.
- W4213329542 cites W3111597734 @default.
- W4213329542 cites W3119028457 @default.
- W4213329542 cites W3178653085 @default.
- W4213329542 cites W3182103742 @default.
- W4213329542 cites W3197898955 @default.
- W4213329542 cites W3207697613 @default.
- W4213329542 doi "https://doi.org/10.1103/physrevresearch.4.013117" @default.
- W4213329542 hasPublicationYear "2022" @default.
- W4213329542 type Work @default.
- W4213329542 citedByCount "6" @default.
- W4213329542 countsByYear W42133295422022 @default.
- W4213329542 countsByYear W42133295422023 @default.
- W4213329542 crossrefType "journal-article" @default.
- W4213329542 hasAuthorship W4213329542A5020387669 @default.
- W4213329542 hasAuthorship W4213329542A5028162758 @default.
- W4213329542 hasAuthorship W4213329542A5040780838 @default.
- W4213329542 hasAuthorship W4213329542A5080023418 @default.
- W4213329542 hasAuthorship W4213329542A5084164080 @default.
- W4213329542 hasBestOaLocation W42133295421 @default.
- W4213329542 hasConcept C11413529 @default.
- W4213329542 hasConcept C121332964 @default.
- W4213329542 hasConcept C124148022 @default.
- W4213329542 hasConcept C130979935 @default.
- W4213329542 hasConcept C137019171 @default.
- W4213329542 hasConcept C154945302 @default.
- W4213329542 hasConcept C186468114 @default.
- W4213329542 hasConcept C41008148 @default.
- W4213329542 hasConcept C58053490 @default.
- W4213329542 hasConcept C58849907 @default.
- W4213329542 hasConcept C62520636 @default.
- W4213329542 hasConcept C80444323 @default.
- W4213329542 hasConcept C81363708 @default.
- W4213329542 hasConcept C84114770 @default.
- W4213329542 hasConceptScore W4213329542C11413529 @default.
- W4213329542 hasConceptScore W4213329542C121332964 @default.
- W4213329542 hasConceptScore W4213329542C124148022 @default.
- W4213329542 hasConceptScore W4213329542C130979935 @default.
- W4213329542 hasConceptScore W4213329542C137019171 @default.
- W4213329542 hasConceptScore W4213329542C154945302 @default.
- W4213329542 hasConceptScore W4213329542C186468114 @default.
- W4213329542 hasConceptScore W4213329542C41008148 @default.
- W4213329542 hasConceptScore W4213329542C58053490 @default.
- W4213329542 hasConceptScore W4213329542C58849907 @default.
- W4213329542 hasConceptScore W4213329542C62520636 @default.
- W4213329542 hasConceptScore W4213329542C80444323 @default.
- W4213329542 hasConceptScore W4213329542C81363708 @default.
- W4213329542 hasConceptScore W4213329542C84114770 @default.
- W4213329542 hasFunder F4320306084 @default.
- W4213329542 hasFunder F4320332359 @default.
- W4213329542 hasFunder F4320333591 @default.
- W4213329542 hasFunder F4320337480 @default.
- W4213329542 hasFunder F4320338281 @default.
- W4213329542 hasFunder F4320338483 @default.
- W4213329542 hasIssue "1" @default.
- W4213329542 hasLocation W42133295421 @default.
- W4213329542 hasLocation W42133295422 @default.
- W4213329542 hasLocation W42133295423 @default.
- W4213329542 hasOpenAccess W4213329542 @default.
- W4213329542 hasPrimaryLocation W42133295421 @default.
- W4213329542 hasRelatedWork W1641472573 @default.
- W4213329542 hasRelatedWork W1986555820 @default.
- W4213329542 hasRelatedWork W2066640878 @default.