Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213341067> ?p ?o ?g. }
- W4213341067 endingPage "864" @default.
- W4213341067 startingPage "849" @default.
- W4213341067 abstract "It is crucial to protect users’ location traces against inference attacks on aggregate mobility data collected from multiple users in various real-world applications. Most of the existing works on aggregate mobility data are focusing on inference attacks rather than designing privacy-preserving release mechanisms, and a few differential private release mechanisms suffer from poor utility-privacy tradeoffs. In this paper, we propose optimal centralized privacy-preserving aggregate mobility data release mechanisms (PAMDRMs) that minimize the leakage from an information-theoretic perspective by releasing perturbed versions of the raw aggregate location. Specifically, we use mutual information to measure user-level and aggregate-level privacy leakage separately, and formulate leakage minimization problems under utility constraints. As directly solving the optimization problems incur exponential complexity w.r.t. users’ trace length, we transform them into belief state Markov Decision Processes (MDPs), with a focus on the MDP formulation for the user-level privacy problem. We build reinforcement learning (RL) models and leverage the efficient Asynchronous Advantage Actor-Critic RL algorithm to derive the solutions to the MDPs as our optimal PAMDRMs. We compare them with two state-of-the-art privacy protection mechanisms PDPR (context-aware local design) and DMLM (context-free centralized design) in terms of mutual information leakage and adversary’s attack success (evaluated by her expected estimation error and Jensen-Shannon Divergence-based error). Extensive experimental results on both synthetic and real-world datasets demonstrate that the user-level PAMDRM performs the best on both measures thanks to its context-aware property and centralized design. Even though the aggregate-level PAMDRM achieves better privacy-utility tradeoff than the other two, it does not always perform better than them on adversarial success, highlighting the necessity of considering privacy measures from different perspectives to avoid overestimating the level of privacy offered to users. Lastly, we discuss an alternative, fully data-driven approach to derive the optimal PAMDRM by leveraging adversarial training on limited data samples." @default.
- W4213341067 created "2022-02-24" @default.
- W4213341067 creator A5055875257 @default.
- W4213341067 creator A5056037931 @default.
- W4213341067 creator A5083787204 @default.
- W4213341067 creator A5086623091 @default.
- W4213341067 date "2022-01-01" @default.
- W4213341067 modified "2023-10-16" @default.
- W4213341067 title "Privacy-Preserving Aggregate Mobility Data Release: An Information-Theoretic Deep Reinforcement Learning Approach" @default.
- W4213341067 cites W1536564267 @default.
- W4213341067 cites W1993599520 @default.
- W4213341067 cites W2001347093 @default.
- W4213341067 cites W2009611335 @default.
- W4213341067 cites W2012992615 @default.
- W4213341067 cites W2024116261 @default.
- W4213341067 cites W2024622963 @default.
- W4213341067 cites W2076675165 @default.
- W4213341067 cites W2077145963 @default.
- W4213341067 cites W2082894754 @default.
- W4213341067 cites W2109426455 @default.
- W4213341067 cites W2117417568 @default.
- W4213341067 cites W2120911939 @default.
- W4213341067 cites W2149921703 @default.
- W4213341067 cites W2151553800 @default.
- W4213341067 cites W2156962537 @default.
- W4213341067 cites W2168359464 @default.
- W4213341067 cites W2171283104 @default.
- W4213341067 cites W2285643495 @default.
- W4213341067 cites W2523313074 @default.
- W4213341067 cites W2566989010 @default.
- W4213341067 cites W2593493160 @default.
- W4213341067 cites W2746057509 @default.
- W4213341067 cites W2809452802 @default.
- W4213341067 cites W2859081967 @default.
- W4213341067 cites W2962986088 @default.
- W4213341067 cites W2963126806 @default.
- W4213341067 cites W2963535017 @default.
- W4213341067 cites W2963833392 @default.
- W4213341067 cites W2966499877 @default.
- W4213341067 cites W2993016614 @default.
- W4213341067 cites W2995900199 @default.
- W4213341067 cites W2998261580 @default.
- W4213341067 cites W3012587129 @default.
- W4213341067 cites W3017747210 @default.
- W4213341067 cites W3046584951 @default.
- W4213341067 cites W3099111404 @default.
- W4213341067 cites W3141610964 @default.
- W4213341067 cites W3169870919 @default.
- W4213341067 cites W3216246137 @default.
- W4213341067 cites W4299734264 @default.
- W4213341067 cites W2134750640 @default.
- W4213341067 doi "https://doi.org/10.1109/tifs.2022.3152361" @default.
- W4213341067 hasPublicationYear "2022" @default.
- W4213341067 type Work @default.
- W4213341067 citedByCount "3" @default.
- W4213341067 countsByYear W42133410672023 @default.
- W4213341067 crossrefType "journal-article" @default.
- W4213341067 hasAuthorship W4213341067A5055875257 @default.
- W4213341067 hasAuthorship W4213341067A5056037931 @default.
- W4213341067 hasAuthorship W4213341067A5083787204 @default.
- W4213341067 hasAuthorship W4213341067A5086623091 @default.
- W4213341067 hasConcept C105795698 @default.
- W4213341067 hasConcept C106189395 @default.
- W4213341067 hasConcept C123201435 @default.
- W4213341067 hasConcept C124101348 @default.
- W4213341067 hasConcept C137822555 @default.
- W4213341067 hasConcept C152139883 @default.
- W4213341067 hasConcept C153083717 @default.
- W4213341067 hasConcept C154945302 @default.
- W4213341067 hasConcept C159886148 @default.
- W4213341067 hasConcept C23130292 @default.
- W4213341067 hasConcept C2776214188 @default.
- W4213341067 hasConcept C2779201187 @default.
- W4213341067 hasConcept C33923547 @default.
- W4213341067 hasConcept C38652104 @default.
- W4213341067 hasConcept C41008148 @default.
- W4213341067 hasConcept C97541855 @default.
- W4213341067 hasConceptScore W4213341067C105795698 @default.
- W4213341067 hasConceptScore W4213341067C106189395 @default.
- W4213341067 hasConceptScore W4213341067C123201435 @default.
- W4213341067 hasConceptScore W4213341067C124101348 @default.
- W4213341067 hasConceptScore W4213341067C137822555 @default.
- W4213341067 hasConceptScore W4213341067C152139883 @default.
- W4213341067 hasConceptScore W4213341067C153083717 @default.
- W4213341067 hasConceptScore W4213341067C154945302 @default.
- W4213341067 hasConceptScore W4213341067C159886148 @default.
- W4213341067 hasConceptScore W4213341067C23130292 @default.
- W4213341067 hasConceptScore W4213341067C2776214188 @default.
- W4213341067 hasConceptScore W4213341067C2779201187 @default.
- W4213341067 hasConceptScore W4213341067C33923547 @default.
- W4213341067 hasConceptScore W4213341067C38652104 @default.
- W4213341067 hasConceptScore W4213341067C41008148 @default.
- W4213341067 hasConceptScore W4213341067C97541855 @default.
- W4213341067 hasFunder F4320306076 @default.
- W4213341067 hasFunder F4320334593 @default.
- W4213341067 hasLocation W42133410671 @default.
- W4213341067 hasOpenAccess W4213341067 @default.
- W4213341067 hasPrimaryLocation W42133410671 @default.