Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213346872> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4213346872 abstract "A key ingredient here is the ultra-high-Q silicon nitride (SiN) ring resonators fabricated at a CMOS foundry [1]. The silicon nitride waveguide has a high aspect-ratio SiN core (100 nm thick) surrounded by buried 14.5-um thick thermal oxide cladding and top deposited upper cladding of 2-um thickness. Over 20 h of annealing at 1,150 °C is employed to minimize the residual hydrogen content of the deposited SiN and SiO2 films. The fabricated silicon nitride ring resonators reported here have different FSRs of 5.4 GHz, 10.8 GHz and 30 GHz. Statistic measurement of the entire 200-mm-diameter wafer unveils that wafer-scale high-yield ultralow loss waveguides are achieved. The nominal intrinsic Q factors are over 200 million for 30 GHz ring resonators (with finesse over 42,000), and around 100 million for 5 GHz ring resonators that employ a narrower SiN waveguide core. We first use these ultra-high-Q ring microresonators to reduce the laser linewidth of an InP distributed feedback (DFB) laser. The InP DFB laser has significant amplified spontaneous emission noise and the laser intrinsic linewidth is on the order of 100 kHz. By placing the laser chip and SiN microresonator chip in close proximity, the laser output is butt coupled to the SiN microresonator bus waveguide. Tuning of the laser gain current shifts the lasing wavelength. When the lasing wavelength coincides with one of the ring resonances, intracavity feedback from the ring resonator is fed back into the laser chip, thus locking the DFB laser output and reducing the laser linewidth. This locking process also depends on the relative phase condition between the forward and backward light, thus the air gap between the two chips is precisely controlled. The DFB laser noise is reduced by 50 dB and the white noise floor is down to below 1 Hz2 /Hz for locking with 5.4 GHz FSR ring resonators. By taking the output from the drop port of the microresonator, the minimum fundamental linewidth achieved is 1.2 Hz, more than an order of magnitude better than any previously reported integrated lasers. The 50 dB frequency noise reduction, however, is still limited by the thermorefractive noise of the microresonators. In our most recent work using a spiral resonator with 140 MHz FSR and lower thermorefractive noise, 70 dB noise reduction is achieved, which results in fundamental linewidth as low as 40 mHz [2]. The InP DFB laser provides over 30 mW power in the SiN bus waveguide, far exceeding the parametric oscillation threshold of the ultra-high-Q microresonator. As a result, we also observed mode-locked Kerr comb generation in the microresonators. The comb formation also relies on the laser self-injection locking. The laser-microresonator compound system creates an operation point where dark pulses are created without the requirement for extra dispersion engineering provided by avoided mode crossings. Photodetection of the generated comb signal on a photodetector generates a high-purity microwave beatnote. At an offset frequency of 10 kHz, the phase noise approaches -100 dBc/Hz for a Kerr comb with 10.8 GHz FSR, and is 129 dBc/Hz at 100 kHz. For a Kerr combs with 5.4 GHz FSR, the phase noise is -114 dBc/Hz at 10 kHz and is -140 dBc/Hz at 100 kHz. For the 10.8 GHz FSR microresonator, we also obtained a comb with a repletion rate of 43.2 GHz. The high coherence of the self-injection locked laser pump line is transferred to the comb lines, resulting a multi-wavelength narrow-linewidth laser source. The microwave oscillator based on the pump laser, microcombs generation and photodetection can be further integrated on a same chip, through heterogeneous integration [3]. Our work paves the way for a fully integrated photonics-based microwave oscillator with low noise. The oscillator frequency can be easily increased to > 100 GHz and beyond by reducing the microresonator diameter." @default.
- W4213346872 created "2022-02-24" @default.
- W4213346872 creator A5006372615 @default.
- W4213346872 creator A5010409452 @default.
- W4213346872 creator A5014550523 @default.
- W4213346872 creator A5025652899 @default.
- W4213346872 creator A5073339342 @default.
- W4213346872 creator A5078436172 @default.
- W4213346872 creator A5084925573 @default.
- W4213346872 creator A5086272281 @default.
- W4213346872 creator A5090519242 @default.
- W4213346872 date "2022-02-14" @default.
- W4213346872 modified "2023-10-17" @default.
- W4213346872 title "Low-noise Microwave Oscillators using Integrated Lasers and Ultra-high-Q Microresonators" @default.
- W4213346872 doi "https://doi.org/10.33012/2022.18271" @default.
- W4213346872 hasPublicationYear "2022" @default.
- W4213346872 type Work @default.
- W4213346872 citedByCount "0" @default.
- W4213346872 crossrefType "proceedings-article" @default.
- W4213346872 hasAuthorship W4213346872A5006372615 @default.
- W4213346872 hasAuthorship W4213346872A5010409452 @default.
- W4213346872 hasAuthorship W4213346872A5014550523 @default.
- W4213346872 hasAuthorship W4213346872A5025652899 @default.
- W4213346872 hasAuthorship W4213346872A5073339342 @default.
- W4213346872 hasAuthorship W4213346872A5078436172 @default.
- W4213346872 hasAuthorship W4213346872A5084925573 @default.
- W4213346872 hasAuthorship W4213346872A5086272281 @default.
- W4213346872 hasAuthorship W4213346872A5090519242 @default.
- W4213346872 hasConcept C120665830 @default.
- W4213346872 hasConcept C121332964 @default.
- W4213346872 hasConcept C142181693 @default.
- W4213346872 hasConcept C160671074 @default.
- W4213346872 hasConcept C192562407 @default.
- W4213346872 hasConcept C2777431650 @default.
- W4213346872 hasConcept C40637687 @default.
- W4213346872 hasConcept C49040817 @default.
- W4213346872 hasConcept C520434653 @default.
- W4213346872 hasConcept C544956773 @default.
- W4213346872 hasConcept C6260449 @default.
- W4213346872 hasConcept C97126364 @default.
- W4213346872 hasConceptScore W4213346872C120665830 @default.
- W4213346872 hasConceptScore W4213346872C121332964 @default.
- W4213346872 hasConceptScore W4213346872C142181693 @default.
- W4213346872 hasConceptScore W4213346872C160671074 @default.
- W4213346872 hasConceptScore W4213346872C192562407 @default.
- W4213346872 hasConceptScore W4213346872C2777431650 @default.
- W4213346872 hasConceptScore W4213346872C40637687 @default.
- W4213346872 hasConceptScore W4213346872C49040817 @default.
- W4213346872 hasConceptScore W4213346872C520434653 @default.
- W4213346872 hasConceptScore W4213346872C544956773 @default.
- W4213346872 hasConceptScore W4213346872C6260449 @default.
- W4213346872 hasConceptScore W4213346872C97126364 @default.
- W4213346872 hasLocation W42133468721 @default.
- W4213346872 hasOpenAccess W4213346872 @default.
- W4213346872 hasPrimaryLocation W42133468721 @default.
- W4213346872 hasRelatedWork W1525152383 @default.
- W4213346872 hasRelatedWork W1587162727 @default.
- W4213346872 hasRelatedWork W1985334063 @default.
- W4213346872 hasRelatedWork W2004750459 @default.
- W4213346872 hasRelatedWork W2010751473 @default.
- W4213346872 hasRelatedWork W2052105616 @default.
- W4213346872 hasRelatedWork W2369486188 @default.
- W4213346872 hasRelatedWork W2508804198 @default.
- W4213346872 hasRelatedWork W3016598986 @default.
- W4213346872 hasRelatedWork W4206738159 @default.
- W4213346872 isParatext "false" @default.
- W4213346872 isRetracted "false" @default.
- W4213346872 workType "article" @default.