Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213363517> ?p ?o ?g. }
- W4213363517 endingPage "111940" @default.
- W4213363517 startingPage "111940" @default.
- W4213363517 abstract "Data quality assurance of building energy consumption monitoring platform plays an important role in building energy consumption management. However, Data collected and transferred to the cloud platform is affected by many factors and shows some missing values and outliers in the time series. Combining with the correlation of smart meters on branches and regularity of building energy consumption characteristics, this paper proposes a synchronous prediction method for predicting building energy consumption in the secondary branch. In this model, synchronous data feature similarity (SDFS) model is used to find a similar energy consumption feature, Extreme gradient boosting (XGBoost) model is used to train and produce accurate prediction results which are compared with back propagation neural network (BPNN) and adaptive boosting (AdaBoost) and maximum distance outlier correction (MDOC) model can further correct the prediction results. Taking the daily energy consumption of the primary branch with a smart meter in the building energy consumption monitoring platform as the test object, the predition results of VRF energy consumption show that the MAE, MAPE, RMSE, and CVRMSE are 1.150, 0.142, 1.511, and 0.132 respectively, which is much lower than BPNN and AdaBoost. This study explores a novel feature mining method for historical data and an integrated model for outlier recognition and correction which significantly improves the accuracy of prediction results. Moreover, after correlation verification, the prediction model can be widely applied in building distribution system with sub-meter system which improves the data utilization rate of building energy management system." @default.
- W4213363517 created "2022-02-24" @default.
- W4213363517 creator A5013890334 @default.
- W4213363517 creator A5036611713 @default.
- W4213363517 creator A5039692998 @default.
- W4213363517 date "2022-04-01" @default.
- W4213363517 modified "2023-10-18" @default.
- W4213363517 title "A synchronous prediction method for hourly energy consumption of abnormal monitoring branch based on the data-driven" @default.
- W4213363517 cites W1990334818 @default.
- W4213363517 cites W1991980504 @default.
- W4213363517 cites W1993693968 @default.
- W4213363517 cites W2047143310 @default.
- W4213363517 cites W2047223987 @default.
- W4213363517 cites W2051607409 @default.
- W4213363517 cites W2083020303 @default.
- W4213363517 cites W2088923426 @default.
- W4213363517 cites W2154989258 @default.
- W4213363517 cites W2163121678 @default.
- W4213363517 cites W2255201377 @default.
- W4213363517 cites W2303781951 @default.
- W4213363517 cites W2436872002 @default.
- W4213363517 cites W2703543086 @default.
- W4213363517 cites W2754029504 @default.
- W4213363517 cites W2790764151 @default.
- W4213363517 cites W2920901284 @default.
- W4213363517 cites W2936343203 @default.
- W4213363517 cites W2994209110 @default.
- W4213363517 cites W3022039226 @default.
- W4213363517 cites W3022436500 @default.
- W4213363517 cites W3025114501 @default.
- W4213363517 cites W3097542115 @default.
- W4213363517 cites W3106680740 @default.
- W4213363517 cites W3135039877 @default.
- W4213363517 cites W3135351349 @default.
- W4213363517 cites W3161610785 @default.
- W4213363517 cites W3176773765 @default.
- W4213363517 cites W4244952642 @default.
- W4213363517 cites W631321264 @default.
- W4213363517 doi "https://doi.org/10.1016/j.enbuild.2022.111940" @default.
- W4213363517 hasPublicationYear "2022" @default.
- W4213363517 type Work @default.
- W4213363517 citedByCount "4" @default.
- W4213363517 countsByYear W42133635172023 @default.
- W4213363517 crossrefType "journal-article" @default.
- W4213363517 hasAuthorship W4213363517A5013890334 @default.
- W4213363517 hasAuthorship W4213363517A5036611713 @default.
- W4213363517 hasAuthorship W4213363517A5039692998 @default.
- W4213363517 hasConcept C10558101 @default.
- W4213363517 hasConcept C119599485 @default.
- W4213363517 hasConcept C121332964 @default.
- W4213363517 hasConcept C124101348 @default.
- W4213363517 hasConcept C127413603 @default.
- W4213363517 hasConcept C138885662 @default.
- W4213363517 hasConcept C141404830 @default.
- W4213363517 hasConcept C150217764 @default.
- W4213363517 hasConcept C154945302 @default.
- W4213363517 hasConcept C2776401178 @default.
- W4213363517 hasConcept C2779510800 @default.
- W4213363517 hasConcept C2780165032 @default.
- W4213363517 hasConcept C41008148 @default.
- W4213363517 hasConcept C41895202 @default.
- W4213363517 hasConcept C46686674 @default.
- W4213363517 hasConcept C50644808 @default.
- W4213363517 hasConcept C79337645 @default.
- W4213363517 hasConcept C83931994 @default.
- W4213363517 hasConcept C95623464 @default.
- W4213363517 hasConcept C97355855 @default.
- W4213363517 hasConceptScore W4213363517C10558101 @default.
- W4213363517 hasConceptScore W4213363517C119599485 @default.
- W4213363517 hasConceptScore W4213363517C121332964 @default.
- W4213363517 hasConceptScore W4213363517C124101348 @default.
- W4213363517 hasConceptScore W4213363517C127413603 @default.
- W4213363517 hasConceptScore W4213363517C138885662 @default.
- W4213363517 hasConceptScore W4213363517C141404830 @default.
- W4213363517 hasConceptScore W4213363517C150217764 @default.
- W4213363517 hasConceptScore W4213363517C154945302 @default.
- W4213363517 hasConceptScore W4213363517C2776401178 @default.
- W4213363517 hasConceptScore W4213363517C2779510800 @default.
- W4213363517 hasConceptScore W4213363517C2780165032 @default.
- W4213363517 hasConceptScore W4213363517C41008148 @default.
- W4213363517 hasConceptScore W4213363517C41895202 @default.
- W4213363517 hasConceptScore W4213363517C46686674 @default.
- W4213363517 hasConceptScore W4213363517C50644808 @default.
- W4213363517 hasConceptScore W4213363517C79337645 @default.
- W4213363517 hasConceptScore W4213363517C83931994 @default.
- W4213363517 hasConceptScore W4213363517C95623464 @default.
- W4213363517 hasConceptScore W4213363517C97355855 @default.
- W4213363517 hasFunder F4320321001 @default.
- W4213363517 hasFunder F4320335777 @default.
- W4213363517 hasLocation W42133635171 @default.
- W4213363517 hasOpenAccess W4213363517 @default.
- W4213363517 hasPrimaryLocation W42133635171 @default.
- W4213363517 hasRelatedWork W1501957814 @default.
- W4213363517 hasRelatedWork W1563626982 @default.
- W4213363517 hasRelatedWork W1987859285 @default.
- W4213363517 hasRelatedWork W1996541855 @default.
- W4213363517 hasRelatedWork W2003125512 @default.
- W4213363517 hasRelatedWork W2108043611 @default.