Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213370289> ?p ?o ?g. }
- W4213370289 endingPage "602" @default.
- W4213370289 startingPage "602" @default.
- W4213370289 abstract "Meat adulteration is a global problem which undermines market fairness and harms people with allergies or certain religious beliefs. In this study, a novel framework in which a one-dimensional convolutional neural network (1DCNN) serves as a backbone and a random forest regressor (RFR) serves as a regressor, named 1DCNN-RFR, is proposed for the quantitative detection of beef adulterated with pork using electronic nose (E-nose) data. The 1DCNN backbone extracted a sufficient number of features from a multichannel input matrix converted from the raw E-nose data. The RFR improved the regression performance due to its strong prediction ability. The effectiveness of the 1DCNN-RFR framework was verified by comparing it with four other models (support vector regression model (SVR), RFR, backpropagation neural network (BPNN), and 1DCNN). The proposed 1DCNN-RFR framework performed best in the quantitative detection of beef adulterated with pork. This study indicated that the proposed 1DCNN-RFR framework could be used as an effective tool for the quantitative detection of meat adulteration." @default.
- W4213370289 created "2022-02-24" @default.
- W4213370289 creator A5052283123 @default.
- W4213370289 creator A5079060042 @default.
- W4213370289 date "2022-02-20" @default.
- W4213370289 modified "2023-10-01" @default.
- W4213370289 title "A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose" @default.
- W4213370289 cites W1971037080 @default.
- W4213370289 cites W1974076946 @default.
- W4213370289 cites W1980627576 @default.
- W4213370289 cites W1980831577 @default.
- W4213370289 cites W2028667068 @default.
- W4213370289 cites W2337996915 @default.
- W4213370289 cites W2754423646 @default.
- W4213370289 cites W2896072522 @default.
- W4213370289 cites W2906426977 @default.
- W4213370289 cites W2907374786 @default.
- W4213370289 cites W2910894790 @default.
- W4213370289 cites W2911964244 @default.
- W4213370289 cites W2919115771 @default.
- W4213370289 cites W2942441318 @default.
- W4213370289 cites W2954110294 @default.
- W4213370289 cites W2962949934 @default.
- W4213370289 cites W2964956394 @default.
- W4213370289 cites W2970325348 @default.
- W4213370289 cites W2991678016 @default.
- W4213370289 cites W3003912395 @default.
- W4213370289 cites W3004235922 @default.
- W4213370289 cites W3004564996 @default.
- W4213370289 cites W3004979231 @default.
- W4213370289 cites W3006638246 @default.
- W4213370289 cites W3007197850 @default.
- W4213370289 cites W3022926677 @default.
- W4213370289 cites W3022996714 @default.
- W4213370289 cites W3048926634 @default.
- W4213370289 cites W3081340759 @default.
- W4213370289 cites W3110728127 @default.
- W4213370289 cites W3120103249 @default.
- W4213370289 cites W3121009121 @default.
- W4213370289 cites W3121985569 @default.
- W4213370289 cites W3122204424 @default.
- W4213370289 cites W3132616171 @default.
- W4213370289 cites W3156318697 @default.
- W4213370289 cites W3156705857 @default.
- W4213370289 cites W3170944611 @default.
- W4213370289 cites W3182284690 @default.
- W4213370289 cites W3201826547 @default.
- W4213370289 cites W4206394861 @default.
- W4213370289 doi "https://doi.org/10.3390/foods11040602" @default.
- W4213370289 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35206078" @default.
- W4213370289 hasPublicationYear "2022" @default.
- W4213370289 type Work @default.
- W4213370289 citedByCount "15" @default.
- W4213370289 countsByYear W42133702892022 @default.
- W4213370289 countsByYear W42133702892023 @default.
- W4213370289 crossrefType "journal-article" @default.
- W4213370289 hasAuthorship W4213370289A5052283123 @default.
- W4213370289 hasAuthorship W4213370289A5079060042 @default.
- W4213370289 hasBestOaLocation W42133702891 @default.
- W4213370289 hasConcept C119857082 @default.
- W4213370289 hasConcept C12267149 @default.
- W4213370289 hasConcept C153180895 @default.
- W4213370289 hasConcept C154945302 @default.
- W4213370289 hasConcept C155032097 @default.
- W4213370289 hasConcept C169258074 @default.
- W4213370289 hasConcept C23895516 @default.
- W4213370289 hasConcept C33923547 @default.
- W4213370289 hasConcept C41008148 @default.
- W4213370289 hasConcept C50644808 @default.
- W4213370289 hasConcept C81363708 @default.
- W4213370289 hasConceptScore W4213370289C119857082 @default.
- W4213370289 hasConceptScore W4213370289C12267149 @default.
- W4213370289 hasConceptScore W4213370289C153180895 @default.
- W4213370289 hasConceptScore W4213370289C154945302 @default.
- W4213370289 hasConceptScore W4213370289C155032097 @default.
- W4213370289 hasConceptScore W4213370289C169258074 @default.
- W4213370289 hasConceptScore W4213370289C23895516 @default.
- W4213370289 hasConceptScore W4213370289C33923547 @default.
- W4213370289 hasConceptScore W4213370289C41008148 @default.
- W4213370289 hasConceptScore W4213370289C50644808 @default.
- W4213370289 hasConceptScore W4213370289C81363708 @default.
- W4213370289 hasFunder F4320321001 @default.
- W4213370289 hasIssue "4" @default.
- W4213370289 hasLocation W42133702891 @default.
- W4213370289 hasLocation W42133702892 @default.
- W4213370289 hasLocation W42133702893 @default.
- W4213370289 hasLocation W42133702894 @default.
- W4213370289 hasLocation W42133702895 @default.
- W4213370289 hasOpenAccess W4213370289 @default.
- W4213370289 hasPrimaryLocation W42133702891 @default.
- W4213370289 hasRelatedWork W1975701708 @default.
- W4213370289 hasRelatedWork W2274735967 @default.
- W4213370289 hasRelatedWork W2358824780 @default.
- W4213370289 hasRelatedWork W2985924212 @default.
- W4213370289 hasRelatedWork W2996933976 @default.
- W4213370289 hasRelatedWork W3195168932 @default.
- W4213370289 hasRelatedWork W3208266890 @default.
- W4213370289 hasRelatedWork W4321636153 @default.