Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213374893> ?p ?o ?g. }
- W4213374893 endingPage "46" @default.
- W4213374893 startingPage "28" @default.
- W4213374893 abstract "Natural disasters have the potential to cause catastrophic damage and massive economic losses. Actual damages and losses have been increasing in recent years. As a result, disaster managers bear a greater responsibility to safeguard their communities in advance by developing effective management strategies. Numerous studies have been conducted on the processing of disaster-related data using artificial intelligence (AI) techniques, all with the goal of developing more effective disaster management strategies. This chapter summarises current AI applications in the four phases of disaster management: mitigation, preparation, response, and recovery. Numerous AI techniques can be applied to various stages of disaster management, and several practical AI-based decision support tools are demonstrated. It seems that the vast majority of artificial intelligence applications are focused on disaster preparedness and response." @default.
- W4213374893 created "2022-02-24" @default.
- W4213374893 creator A5061053504 @default.
- W4213374893 date "2022-01-01" @default.
- W4213374893 modified "2023-10-17" @default.
- W4213374893 title "An Artificial Intelligence (AI) Approach to Controlling Disaster Scenarios" @default.
- W4213374893 cites W1014033202 @default.
- W4213374893 cites W1852719163 @default.
- W4213374893 cites W20191178 @default.
- W4213374893 cites W2045458899 @default.
- W4213374893 cites W2096271772 @default.
- W4213374893 cites W2141902597 @default.
- W4213374893 cites W2168595459 @default.
- W4213374893 cites W2186223559 @default.
- W4213374893 cites W2227904035 @default.
- W4213374893 cites W2396451279 @default.
- W4213374893 cites W2412588858 @default.
- W4213374893 cites W2427265476 @default.
- W4213374893 cites W2551338615 @default.
- W4213374893 cites W2577905870 @default.
- W4213374893 cites W2588727045 @default.
- W4213374893 cites W2605912715 @default.
- W4213374893 cites W2618530766 @default.
- W4213374893 cites W2714779472 @default.
- W4213374893 cites W2742970053 @default.
- W4213374893 cites W2753205644 @default.
- W4213374893 cites W2754270114 @default.
- W4213374893 cites W2760320476 @default.
- W4213374893 cites W2765890471 @default.
- W4213374893 cites W2773900012 @default.
- W4213374893 cites W2780407003 @default.
- W4213374893 cites W2783261033 @default.
- W4213374893 cites W2790482354 @default.
- W4213374893 cites W2795704534 @default.
- W4213374893 cites W2801081735 @default.
- W4213374893 cites W2885471572 @default.
- W4213374893 cites W2885551098 @default.
- W4213374893 cites W2888069072 @default.
- W4213374893 cites W2889524045 @default.
- W4213374893 cites W2890022364 @default.
- W4213374893 cites W2890883839 @default.
- W4213374893 cites W2892341857 @default.
- W4213374893 cites W2895546528 @default.
- W4213374893 cites W2898553395 @default.
- W4213374893 cites W2904772238 @default.
- W4213374893 cites W2942723925 @default.
- W4213374893 cites W2945970408 @default.
- W4213374893 cites W2946008786 @default.
- W4213374893 cites W2955435402 @default.
- W4213374893 cites W2958934459 @default.
- W4213374893 cites W2964069458 @default.
- W4213374893 cites W2979010783 @default.
- W4213374893 cites W2980001345 @default.
- W4213374893 cites W2993567972 @default.
- W4213374893 cites W3003791544 @default.
- W4213374893 cites W3007075612 @default.
- W4213374893 cites W3007539386 @default.
- W4213374893 cites W3011757677 @default.
- W4213374893 cites W3023528487 @default.
- W4213374893 cites W3037699269 @default.
- W4213374893 cites W3087137733 @default.
- W4213374893 cites W3087692705 @default.
- W4213374893 cites W3102578299 @default.
- W4213374893 cites W3137141854 @default.
- W4213374893 cites W3169032772 @default.
- W4213374893 cites W3212095633 @default.
- W4213374893 cites W4205947740 @default.
- W4213374893 doi "https://doi.org/10.4018/978-1-7998-9815-3.ch003" @default.
- W4213374893 hasPublicationYear "2022" @default.
- W4213374893 type Work @default.
- W4213374893 citedByCount "0" @default.
- W4213374893 crossrefType "book-chapter" @default.
- W4213374893 hasAuthorship W4213374893A5061053504 @default.
- W4213374893 hasConcept C112930515 @default.
- W4213374893 hasConcept C127413603 @default.
- W4213374893 hasConcept C144133560 @default.
- W4213374893 hasConcept C153294291 @default.
- W4213374893 hasConcept C154945302 @default.
- W4213374893 hasConcept C155202549 @default.
- W4213374893 hasConcept C157170001 @default.
- W4213374893 hasConcept C166566181 @default.
- W4213374893 hasConcept C17744445 @default.
- W4213374893 hasConcept C199539241 @default.
- W4213374893 hasConcept C205649164 @default.
- W4213374893 hasConcept C2777042776 @default.
- W4213374893 hasConcept C2777381055 @default.
- W4213374893 hasConcept C2780771206 @default.
- W4213374893 hasConcept C3018653863 @default.
- W4213374893 hasConcept C3020699826 @default.
- W4213374893 hasConcept C41008148 @default.
- W4213374893 hasConcept C62555980 @default.
- W4213374893 hasConceptScore W4213374893C112930515 @default.
- W4213374893 hasConceptScore W4213374893C127413603 @default.
- W4213374893 hasConceptScore W4213374893C144133560 @default.
- W4213374893 hasConceptScore W4213374893C153294291 @default.
- W4213374893 hasConceptScore W4213374893C154945302 @default.
- W4213374893 hasConceptScore W4213374893C155202549 @default.
- W4213374893 hasConceptScore W4213374893C157170001 @default.