Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213376483> ?p ?o ?g. }
- W4213376483 endingPage "781" @default.
- W4213376483 startingPage "769" @default.
- W4213376483 abstract "Forecasting pedestrians' future trajectory in unknown complex environments is essential to autonomous navigation in real-world applications, for example, for self-driving cars and collision warnings. However, modern observed trajectory-based prediction methods may easily over-fit to complex or rare scenes because they do not entirely understand the correlations between scenes and trajectories. To address the over-fitting problem, an Inverse Reinforcement Learning for Scene-oriented Trajectory Prediction (IRLSOT) is proposed in this work. The authors' method can be divided into three modules. First, the inverse reinforcement learning module generates the optimal policy by extracting features from scenes and pedestrians' observed trajectories. A lightweight ENet is used to extract features from scenes. Afterwards, the path sampling module introduces a Gumbel Softmax Trick (GST) to improve the accuracy of optimal policy sampling. Different paths are generated on the basis of the optimal policies. Finally, the information fusion module uses the proposed Scene Based Attention (SBA) to fuse the path and trajectory information, then outputs the predicted trajectories. Comparison results show that IRLSOT improves performance on Stanford Drone Database(SDD) by 5.9 % $%$ . Furthermore, the authors' test IRLSOT on multi-agent scenarios and the authors' own data sets, and results demonstrate that IRLSOT can enhance the generalization of trajectory prediction to rare or new scenes." @default.
- W4213376483 created "2022-02-24" @default.
- W4213376483 creator A5026108994 @default.
- W4213376483 creator A5036712571 @default.
- W4213376483 creator A5036995131 @default.
- W4213376483 creator A5052883667 @default.
- W4213376483 creator A5060340545 @default.
- W4213376483 creator A5078693770 @default.
- W4213376483 date "2022-02-13" @default.
- W4213376483 modified "2023-10-16" @default.
- W4213376483 title "IRLSOT: Inverse reinforcement learning for scene‐oriented trajectory prediction" @default.
- W4213376483 cites W1745334888 @default.
- W4213376483 cites W1996625075 @default.
- W4213376483 cites W2154844948 @default.
- W4213376483 cites W2169261433 @default.
- W4213376483 cites W2169498096 @default.
- W4213376483 cites W2324129760 @default.
- W4213376483 cites W2336416123 @default.
- W4213376483 cites W2424778531 @default.
- W4213376483 cites W2563487472 @default.
- W4213376483 cites W2744369598 @default.
- W4213376483 cites W2799785415 @default.
- W4213376483 cites W2894978157 @default.
- W4213376483 cites W2911273949 @default.
- W4213376483 cites W2940129212 @default.
- W4213376483 cites W2962687116 @default.
- W4213376483 cites W2963001155 @default.
- W4213376483 cites W2963881378 @default.
- W4213376483 cites W2963906196 @default.
- W4213376483 cites W2967177252 @default.
- W4213376483 cites W2982745079 @default.
- W4213376483 cites W2991653934 @default.
- W4213376483 cites W3007298738 @default.
- W4213376483 cites W3035096461 @default.
- W4213376483 cites W3042505632 @default.
- W4213376483 cites W3093327719 @default.
- W4213376483 cites W3129176582 @default.
- W4213376483 cites W3135934332 @default.
- W4213376483 cites W3182474098 @default.
- W4213376483 cites W4229856339 @default.
- W4213376483 doi "https://doi.org/10.1049/itr2.12172" @default.
- W4213376483 hasPublicationYear "2022" @default.
- W4213376483 type Work @default.
- W4213376483 citedByCount "8" @default.
- W4213376483 countsByYear W42133764832022 @default.
- W4213376483 countsByYear W42133764832023 @default.
- W4213376483 crossrefType "journal-article" @default.
- W4213376483 hasAuthorship W4213376483A5026108994 @default.
- W4213376483 hasAuthorship W4213376483A5036712571 @default.
- W4213376483 hasAuthorship W4213376483A5036995131 @default.
- W4213376483 hasAuthorship W4213376483A5052883667 @default.
- W4213376483 hasAuthorship W4213376483A5060340545 @default.
- W4213376483 hasAuthorship W4213376483A5078693770 @default.
- W4213376483 hasBestOaLocation W42133764831 @default.
- W4213376483 hasConcept C106131492 @default.
- W4213376483 hasConcept C108583219 @default.
- W4213376483 hasConcept C119857082 @default.
- W4213376483 hasConcept C121332964 @default.
- W4213376483 hasConcept C1276947 @default.
- W4213376483 hasConcept C134306372 @default.
- W4213376483 hasConcept C13662910 @default.
- W4213376483 hasConcept C140779682 @default.
- W4213376483 hasConcept C154945302 @default.
- W4213376483 hasConcept C177148314 @default.
- W4213376483 hasConcept C188441871 @default.
- W4213376483 hasConcept C199360897 @default.
- W4213376483 hasConcept C2777735758 @default.
- W4213376483 hasConcept C31972630 @default.
- W4213376483 hasConcept C33923547 @default.
- W4213376483 hasConcept C41008148 @default.
- W4213376483 hasConcept C97541855 @default.
- W4213376483 hasConceptScore W4213376483C106131492 @default.
- W4213376483 hasConceptScore W4213376483C108583219 @default.
- W4213376483 hasConceptScore W4213376483C119857082 @default.
- W4213376483 hasConceptScore W4213376483C121332964 @default.
- W4213376483 hasConceptScore W4213376483C1276947 @default.
- W4213376483 hasConceptScore W4213376483C134306372 @default.
- W4213376483 hasConceptScore W4213376483C13662910 @default.
- W4213376483 hasConceptScore W4213376483C140779682 @default.
- W4213376483 hasConceptScore W4213376483C154945302 @default.
- W4213376483 hasConceptScore W4213376483C177148314 @default.
- W4213376483 hasConceptScore W4213376483C188441871 @default.
- W4213376483 hasConceptScore W4213376483C199360897 @default.
- W4213376483 hasConceptScore W4213376483C2777735758 @default.
- W4213376483 hasConceptScore W4213376483C31972630 @default.
- W4213376483 hasConceptScore W4213376483C33923547 @default.
- W4213376483 hasConceptScore W4213376483C41008148 @default.
- W4213376483 hasConceptScore W4213376483C97541855 @default.
- W4213376483 hasIssue "6" @default.
- W4213376483 hasLocation W42133764831 @default.
- W4213376483 hasOpenAccess W4213376483 @default.
- W4213376483 hasPrimaryLocation W42133764831 @default.
- W4213376483 hasRelatedWork W2000407620 @default.
- W4213376483 hasRelatedWork W2752108245 @default.
- W4213376483 hasRelatedWork W2888789309 @default.
- W4213376483 hasRelatedWork W2912947802 @default.
- W4213376483 hasRelatedWork W2963673305 @default.
- W4213376483 hasRelatedWork W2969585312 @default.