Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213387260> ?p ?o ?g. }
- W4213387260 endingPage "108022" @default.
- W4213387260 startingPage "108022" @default.
- W4213387260 abstract "• Novel classification of multi-objective optimization methods. • Subclassifcation of Pareto pruning methods according to the pruning instruction. • A review of performance indicators for the pruned Pareto set. • Comparative analyses across different multi-objective optimization classes. • Insights into current trends and potential research areas for Pareto pruning methods. Previous researchers have made impressive strides in developing algorithms and solution methodologies to address multi-objective optimization (MOO) problems in industrial engineering and associated fields. One traditional approach is to determine a Pareto optimal set that represents the trade-off between objectives. However, this approach could result in an extremely large set of solutions, making it difficult for the decision maker to identify the most promising solutions from the Pareto front. To deal with this issue, later contributors proposed alternative approaches that can autonomously draw up a shortlist of Pareto optimal solutions so that the results are more comprehensible to the decision maker. These alternative approaches are referred to as the pruning method in this review. The selection of the representative solutions in the pruning method is based on a predefined instruction, and its resolution process is mostly independent of the decision maker. To systematize studies on this aspect, we first provide the definitions of the pruning method and related terms; then, we establish a new classification of MOO methods to distinguish the pruning method from the a priori , a posteriori , and interactive methods. To facilitate readers in identifying a method that suits their interests, we further classify the pruning method by the instruction on how the representative solutions are selected, namely into the preference-based, diversity-based, efficiency-based, and problem specific methods. Ultimately, the comparative analysis of the pruning method and other MOO approaches allows us to provide insights into the current trends in the field and offer recommendations on potential research directions." @default.
- W4213387260 created "2022-02-24" @default.
- W4213387260 creator A5013847446 @default.
- W4213387260 creator A5024191250 @default.
- W4213387260 creator A5044425563 @default.
- W4213387260 creator A5075872953 @default.
- W4213387260 creator A5077637329 @default.
- W4213387260 date "2022-05-01" @default.
- W4213387260 modified "2023-10-16" @default.
- W4213387260 title "A review of Pareto pruning methods for multi-objective optimization" @default.
- W4213387260 cites W1512244809 @default.
- W4213387260 cites W1525375343 @default.
- W4213387260 cites W1534477342 @default.
- W4213387260 cites W1859642070 @default.
- W4213387260 cites W1884891163 @default.
- W4213387260 cites W1902062008 @default.
- W4213387260 cites W1940310189 @default.
- W4213387260 cites W1965528589 @default.
- W4213387260 cites W1968378941 @default.
- W4213387260 cites W1968382295 @default.
- W4213387260 cites W1968535060 @default.
- W4213387260 cites W1969910923 @default.
- W4213387260 cites W1970161313 @default.
- W4213387260 cites W1971627689 @default.
- W4213387260 cites W1973423211 @default.
- W4213387260 cites W1974876127 @default.
- W4213387260 cites W1975142551 @default.
- W4213387260 cites W1975371461 @default.
- W4213387260 cites W1977785179 @default.
- W4213387260 cites W1981450717 @default.
- W4213387260 cites W1985872004 @default.
- W4213387260 cites W1990421110 @default.
- W4213387260 cites W1992419399 @default.
- W4213387260 cites W1995951234 @default.
- W4213387260 cites W1997188340 @default.
- W4213387260 cites W1997541087 @default.
- W4213387260 cites W2000295051 @default.
- W4213387260 cites W2003074920 @default.
- W4213387260 cites W2011430131 @default.
- W4213387260 cites W2016096535 @default.
- W4213387260 cites W2017784810 @default.
- W4213387260 cites W2021297832 @default.
- W4213387260 cites W2023494037 @default.
- W4213387260 cites W2025393568 @default.
- W4213387260 cites W2026662237 @default.
- W4213387260 cites W2027342001 @default.
- W4213387260 cites W2027689324 @default.
- W4213387260 cites W2036830360 @default.
- W4213387260 cites W2038420231 @default.
- W4213387260 cites W2039184361 @default.
- W4213387260 cites W2040622444 @default.
- W4213387260 cites W2041935537 @default.
- W4213387260 cites W2042221267 @default.
- W4213387260 cites W2044127167 @default.
- W4213387260 cites W2046994261 @default.
- W4213387260 cites W2047156683 @default.
- W4213387260 cites W2049260303 @default.
- W4213387260 cites W2050121874 @default.
- W4213387260 cites W2056624909 @default.
- W4213387260 cites W2059999216 @default.
- W4213387260 cites W2067191022 @default.
- W4213387260 cites W2070196774 @default.
- W4213387260 cites W2072661909 @default.
- W4213387260 cites W2072921178 @default.
- W4213387260 cites W2073247434 @default.
- W4213387260 cites W2075356520 @default.
- W4213387260 cites W2076452041 @default.
- W4213387260 cites W2077084443 @default.
- W4213387260 cites W2079661120 @default.
- W4213387260 cites W2080927183 @default.
- W4213387260 cites W2088660875 @default.
- W4213387260 cites W2089929273 @default.
- W4213387260 cites W2090218528 @default.
- W4213387260 cites W2090235798 @default.
- W4213387260 cites W2093995766 @default.
- W4213387260 cites W2098907614 @default.
- W4213387260 cites W2101950038 @default.
- W4213387260 cites W2104226584 @default.
- W4213387260 cites W2106334424 @default.
- W4213387260 cites W2110828487 @default.
- W4213387260 cites W2135863358 @default.
- W4213387260 cites W2149276507 @default.
- W4213387260 cites W2153233077 @default.
- W4213387260 cites W2153654820 @default.
- W4213387260 cites W2166031758 @default.
- W4213387260 cites W2167307376 @default.
- W4213387260 cites W2170589503 @default.
- W4213387260 cites W2171121489 @default.
- W4213387260 cites W2247167922 @default.
- W4213387260 cites W2260221217 @default.
- W4213387260 cites W2290904103 @default.
- W4213387260 cites W2414063984 @default.
- W4213387260 cites W2443374046 @default.
- W4213387260 cites W2467728018 @default.
- W4213387260 cites W2521231291 @default.
- W4213387260 cites W2532581606 @default.
- W4213387260 cites W2544764962 @default.
- W4213387260 cites W2594144543 @default.