Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213412586> ?p ?o ?g. }
- W4213412586 endingPage "22914" @default.
- W4213412586 startingPage "22902" @default.
- W4213412586 abstract "Multi-label classification is the supervised learning problem in which an instance is associated with a set of labels. In this, labels are correlated, and hence label dependency information plays a vital role. Its always been a question of research to decide the order of labels to exploit their inter-dependency. Hence, to this end, many research works are done that, in general, can be categorized as problem transformation and algorithm adaptation techniques. The problem transformation reconstructs the multi-label problem as a multiple single class problem. The algorithm transformation modifies the existing well-known machine learning approaches to solve the multi-label classification problem. However, these two techniques have their pros and cons. In this paper, we propose a novel approach to consider the merits of both techniques, hence named Hybrid Multi-Label Random Forest (HML-RF). The multi-label decision trees are used as base classifiers in the proposed approach to construct the HML-RF model. Each base classifier is constructed over a randomly selected subset of labels to exploit the label dependency. We also formulate a way to compute the tree strength of a multi-label decision tree, which is used to construct the HML-RF with strength (HML-RFws). The efficacy of the proposed approach is tested over the ten well-known and publicly available datasets. Experimental results show the HML-RF is performing better for at-least six datasets, and the HML-RFws is performing better for at-least nine datasets in comparison to state-of-the-art approaches in terms of accuracy, hamming loss, and zero-one loss. Finally, the statistical test is also validating all the experimental results." @default.
- W4213412586 created "2022-02-25" @default.
- W4213412586 creator A5035484504 @default.
- W4213412586 creator A5085892724 @default.
- W4213412586 creator A5087435636 @default.
- W4213412586 date "2022-01-01" @default.
- W4213412586 modified "2023-09-27" @default.
- W4213412586 title "HML-RF: Hybrid Multi-Label Random Forest" @default.
- W4213412586 cites W1524416683 @default.
- W4213412586 cites W1588036380 @default.
- W4213412586 cites W1753402186 @default.
- W4213412586 cites W1967542092 @default.
- W4213412586 cites W1986159170 @default.
- W4213412586 cites W1999954155 @default.
- W4213412586 cites W2006462052 @default.
- W4213412586 cites W2010262905 @default.
- W4213412586 cites W2029517229 @default.
- W4213412586 cites W2046380547 @default.
- W4213412586 cites W2052684427 @default.
- W4213412586 cites W2056132907 @default.
- W4213412586 cites W2114315281 @default.
- W4213412586 cites W2119466907 @default.
- W4213412586 cites W2138290126 @default.
- W4213412586 cites W2165250079 @default.
- W4213412586 cites W2167277498 @default.
- W4213412586 cites W2325261669 @default.
- W4213412586 cites W2343475530 @default.
- W4213412586 cites W2443284789 @default.
- W4213412586 cites W2481401919 @default.
- W4213412586 cites W2588628126 @default.
- W4213412586 cites W2907669945 @default.
- W4213412586 cites W2910593176 @default.
- W4213412586 cites W2911964244 @default.
- W4213412586 cites W2945970107 @default.
- W4213412586 cites W2946236639 @default.
- W4213412586 cites W2963745697 @default.
- W4213412586 cites W2969932435 @default.
- W4213412586 cites W2998301895 @default.
- W4213412586 cites W3001455994 @default.
- W4213412586 cites W3011149291 @default.
- W4213412586 cites W3080802002 @default.
- W4213412586 cites W3096306307 @default.
- W4213412586 cites W3109641518 @default.
- W4213412586 cites W4232478844 @default.
- W4213412586 cites W4236137412 @default.
- W4213412586 doi "https://doi.org/10.1109/access.2022.3154420" @default.
- W4213412586 hasPublicationYear "2022" @default.
- W4213412586 type Work @default.
- W4213412586 citedByCount "2" @default.
- W4213412586 countsByYear W42134125862022 @default.
- W4213412586 countsByYear W42134125862023 @default.
- W4213412586 crossrefType "journal-article" @default.
- W4213412586 hasAuthorship W4213412586A5035484504 @default.
- W4213412586 hasAuthorship W4213412586A5085892724 @default.
- W4213412586 hasAuthorship W4213412586A5087435636 @default.
- W4213412586 hasBestOaLocation W42134125861 @default.
- W4213412586 hasConcept C104317684 @default.
- W4213412586 hasConcept C113174947 @default.
- W4213412586 hasConcept C119857082 @default.
- W4213412586 hasConcept C124101348 @default.
- W4213412586 hasConcept C134306372 @default.
- W4213412586 hasConcept C153180895 @default.
- W4213412586 hasConcept C154945302 @default.
- W4213412586 hasConcept C165696696 @default.
- W4213412586 hasConcept C169258074 @default.
- W4213412586 hasConcept C177264268 @default.
- W4213412586 hasConcept C185592680 @default.
- W4213412586 hasConcept C19768560 @default.
- W4213412586 hasConcept C199360897 @default.
- W4213412586 hasConcept C204241405 @default.
- W4213412586 hasConcept C2776482837 @default.
- W4213412586 hasConcept C2777212361 @default.
- W4213412586 hasConcept C2780801425 @default.
- W4213412586 hasConcept C33923547 @default.
- W4213412586 hasConcept C38652104 @default.
- W4213412586 hasConcept C41008148 @default.
- W4213412586 hasConcept C55493867 @default.
- W4213412586 hasConcept C84525736 @default.
- W4213412586 hasConcept C95623464 @default.
- W4213412586 hasConceptScore W4213412586C104317684 @default.
- W4213412586 hasConceptScore W4213412586C113174947 @default.
- W4213412586 hasConceptScore W4213412586C119857082 @default.
- W4213412586 hasConceptScore W4213412586C124101348 @default.
- W4213412586 hasConceptScore W4213412586C134306372 @default.
- W4213412586 hasConceptScore W4213412586C153180895 @default.
- W4213412586 hasConceptScore W4213412586C154945302 @default.
- W4213412586 hasConceptScore W4213412586C165696696 @default.
- W4213412586 hasConceptScore W4213412586C169258074 @default.
- W4213412586 hasConceptScore W4213412586C177264268 @default.
- W4213412586 hasConceptScore W4213412586C185592680 @default.
- W4213412586 hasConceptScore W4213412586C19768560 @default.
- W4213412586 hasConceptScore W4213412586C199360897 @default.
- W4213412586 hasConceptScore W4213412586C204241405 @default.
- W4213412586 hasConceptScore W4213412586C2776482837 @default.
- W4213412586 hasConceptScore W4213412586C2777212361 @default.
- W4213412586 hasConceptScore W4213412586C2780801425 @default.
- W4213412586 hasConceptScore W4213412586C33923547 @default.
- W4213412586 hasConceptScore W4213412586C38652104 @default.