Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213413508> ?p ?o ?g. }
- W4213413508 abstract "Machine learning (ML) has been largely applied for predicting migraine classification. However, the prediction of efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine is still in the early stages. This study aims to evaluate whether the combination of machine learning and amygdala-related functional features could help predict the efficacy of NSAIDs in patients with migraine without aura (MwoA). A total of 70 MwoA patients were enrolled for the study, including patients with an effective response to NSAIDs (M-eNSAIDs, n = 35) and MwoA patients with ineffective response to NSAIDs (M-ieNSAIDs, n = 35). Furthermore, 33 healthy controls (HCs) were matched for age, sex, and education level. The study participants were subjected to resting-state functional magnetic resonance imaging (fMRI) scanning. Disrupted functional connectivity (FC) patterns from amygdala-based FC analysis and clinical characteristics were considered features that could promote classification through multivariable logistic regression (MLR) and support vector machine (SVM) for predicting the efficacy of NSAIDs. Further, receiver operating characteristic (ROC) curves were drawn to evaluate the predictive ability of the models. The M-eNSAIDs group exhibited enhanced FC with ipsilateral calcarine sulcus (CAL), superior parietal gyrus (SPG), paracentral lobule (PCL), and contralateral superior frontal gyrus (SFG) in the left amygdala. However, the M-eNSAIDs group showed decreased FC with ipsilateral caudate nucleus (CAU), compared to the M-ieNSAIDs group. Moreover, the M-eNSAIDs group showed higher FC with left pre-central gyrus (PreCG) and post-central gyrus (PoCG) compared to HCs. In contrast, the M-ieNSAIDs group showed lower FC with the left anterior cingulate cortex (ACC) and right SFG. Furthermore, the MwoA patients showed increased FC with the left middle frontal gyrus (MFG) in the right amygdala compared to HCs. The disrupted left amygdala-related FC patterns exhibited significant correlations with migraine characteristics in the M-ieNSAIDs group. The MLR and SVM models discriminated clinical efficacy of NSAIDs with an area under the curve (AUC) of 0.891 and 0.896, sensitivity of 0.971 and 0.833, and specificity of 0.629 and 0.875, respectively. These findings suggest that the efficacy of NSAIDs in migraine could be predicted using ML algorithm. Furthermore, this study highlights the role of amygdala-related neural function in revealing underlying migraine-related neuroimaging mechanisms." @default.
- W4213413508 created "2022-02-25" @default.
- W4213413508 creator A5021112134 @default.
- W4213413508 creator A5026996727 @default.
- W4213413508 creator A5027449684 @default.
- W4213413508 creator A5029751699 @default.
- W4213413508 creator A5031303595 @default.
- W4213413508 creator A5031466356 @default.
- W4213413508 creator A5054449543 @default.
- W4213413508 creator A5057664014 @default.
- W4213413508 creator A5069849278 @default.
- W4213413508 creator A5073830471 @default.
- W4213413508 creator A5077904439 @default.
- W4213413508 date "2022-02-24" @default.
- W4213413508 modified "2023-09-27" @default.
- W4213413508 title "Disrupted Functional Connectivity of the Amygdala Predicts the Efficacy of Non-steroidal Anti-inflammatory Drugs in Migraineurs Without Aura" @default.
- W4213413508 cites W1683401737 @default.
- W4213413508 cites W2003334995 @default.
- W4213413508 cites W2010729500 @default.
- W4213413508 cites W2079322037 @default.
- W4213413508 cites W2110787701 @default.
- W4213413508 cites W2122163450 @default.
- W4213413508 cites W2129239485 @default.
- W4213413508 cites W2142055671 @default.
- W4213413508 cites W2151072389 @default.
- W4213413508 cites W2153079669 @default.
- W4213413508 cites W2159259673 @default.
- W4213413508 cites W2166651772 @default.
- W4213413508 cites W2279073929 @default.
- W4213413508 cites W2440556161 @default.
- W4213413508 cites W2527824850 @default.
- W4213413508 cites W2579322749 @default.
- W4213413508 cites W2767639006 @default.
- W4213413508 cites W2769418009 @default.
- W4213413508 cites W2769724041 @default.
- W4213413508 cites W2777701036 @default.
- W4213413508 cites W2801466088 @default.
- W4213413508 cites W2806772379 @default.
- W4213413508 cites W2807426801 @default.
- W4213413508 cites W2886708082 @default.
- W4213413508 cites W2890686930 @default.
- W4213413508 cites W2935467049 @default.
- W4213413508 cites W2943077998 @default.
- W4213413508 cites W2948000217 @default.
- W4213413508 cites W2949511769 @default.
- W4213413508 cites W2972864586 @default.
- W4213413508 cites W2980460119 @default.
- W4213413508 cites W2983019057 @default.
- W4213413508 cites W2989385279 @default.
- W4213413508 cites W2992546654 @default.
- W4213413508 cites W2995957760 @default.
- W4213413508 cites W3037273573 @default.
- W4213413508 cites W3086496627 @default.
- W4213413508 cites W3091138412 @default.
- W4213413508 cites W3101939851 @default.
- W4213413508 cites W3111480298 @default.
- W4213413508 cites W3137245482 @default.
- W4213413508 cites W3139174907 @default.
- W4213413508 cites W3155633278 @default.
- W4213413508 cites W3163764284 @default.
- W4213413508 cites W3186976531 @default.
- W4213413508 cites W3205994307 @default.
- W4213413508 cites W4254908862 @default.
- W4213413508 doi "https://doi.org/10.3389/fnmol.2022.819507" @default.
- W4213413508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35283727" @default.
- W4213413508 hasPublicationYear "2022" @default.
- W4213413508 type Work @default.
- W4213413508 citedByCount "3" @default.
- W4213413508 countsByYear W42134135082022 @default.
- W4213413508 countsByYear W42134135082023 @default.
- W4213413508 crossrefType "journal-article" @default.
- W4213413508 hasAuthorship W4213413508A5021112134 @default.
- W4213413508 hasAuthorship W4213413508A5026996727 @default.
- W4213413508 hasAuthorship W4213413508A5027449684 @default.
- W4213413508 hasAuthorship W4213413508A5029751699 @default.
- W4213413508 hasAuthorship W4213413508A5031303595 @default.
- W4213413508 hasAuthorship W4213413508A5031466356 @default.
- W4213413508 hasAuthorship W4213413508A5054449543 @default.
- W4213413508 hasAuthorship W4213413508A5057664014 @default.
- W4213413508 hasAuthorship W4213413508A5069849278 @default.
- W4213413508 hasAuthorship W4213413508A5073830471 @default.
- W4213413508 hasAuthorship W4213413508A5077904439 @default.
- W4213413508 hasBestOaLocation W42134135081 @default.
- W4213413508 hasConcept C126322002 @default.
- W4213413508 hasConcept C15744967 @default.
- W4213413508 hasConcept C169760540 @default.
- W4213413508 hasConcept C2775956885 @default.
- W4213413508 hasConcept C2777350023 @default.
- W4213413508 hasConcept C2777655717 @default.
- W4213413508 hasConcept C2777944498 @default.
- W4213413508 hasConcept C2778386660 @default.
- W4213413508 hasConcept C2778541695 @default.
- W4213413508 hasConcept C2779144063 @default.
- W4213413508 hasConcept C2779226451 @default.
- W4213413508 hasConcept C2781423396 @default.
- W4213413508 hasConcept C42219234 @default.
- W4213413508 hasConcept C548259974 @default.
- W4213413508 hasConcept C58471807 @default.
- W4213413508 hasConcept C71924100 @default.
- W4213413508 hasConceptScore W4213413508C126322002 @default.