Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213417943> ?p ?o ?g. }
- W4213417943 abstract "This article deals with an innovative approach to maximum power point tracking (MPPT) in power systems using the reservoir computing (RC) technique. Even though extensive studies have been conducted on MPPT to improve solar PV systems efficiency, there is still considerable room for improvement. The methodology consisted in modeling and programming with MATLAB software, the reservoir computing paradigm, which is a form of recurrent neural network. The performances of the RC algorithm were compared to two well-known methods of maximum power point tracking: perturbed and observed (P&O) and artificial neural networks (ANN). Power, voltage, current, and temperature characteristics were assessed, plotted, and compared. It was established that the RC-MPPT provided better performances than P&O-MPPT and ANN-MPPT from the perspective of training and testing MSE, rapid convergence, and accuracy of tracking. These findings suggest the need for rapid implementation of the proposed RC-MPPT algorithm on microcontroller chips for the widespread use and adoption globally." @default.
- W4213417943 created "2022-02-25" @default.
- W4213417943 creator A5059359123 @default.
- W4213417943 creator A5067072304 @default.
- W4213417943 creator A5068051266 @default.
- W4213417943 creator A5072938130 @default.
- W4213417943 creator A5079453102 @default.
- W4213417943 date "2022-02-24" @default.
- W4213417943 modified "2023-09-26" @default.
- W4213417943 title "Maximum Power Point Tracking in Power System Control Using Reservoir Computing" @default.
- W4213417943 cites W1964606840 @default.
- W4213417943 cites W1971066582 @default.
- W4213417943 cites W1974773281 @default.
- W4213417943 cites W1978179443 @default.
- W4213417943 cites W1978399945 @default.
- W4213417943 cites W1989185482 @default.
- W4213417943 cites W1999665034 @default.
- W4213417943 cites W2007177309 @default.
- W4213417943 cites W2021065660 @default.
- W4213417943 cites W2024388609 @default.
- W4213417943 cites W2028001176 @default.
- W4213417943 cites W2033684190 @default.
- W4213417943 cites W2040632675 @default.
- W4213417943 cites W2043047481 @default.
- W4213417943 cites W2047604914 @default.
- W4213417943 cites W2050322675 @default.
- W4213417943 cites W2054217036 @default.
- W4213417943 cites W2055973228 @default.
- W4213417943 cites W2070128629 @default.
- W4213417943 cites W2076015009 @default.
- W4213417943 cites W2110331594 @default.
- W4213417943 cites W2120631709 @default.
- W4213417943 cites W2131648120 @default.
- W4213417943 cites W2134409946 @default.
- W4213417943 cites W2137368303 @default.
- W4213417943 cites W2148107264 @default.
- W4213417943 cites W2183551095 @default.
- W4213417943 cites W2192523407 @default.
- W4213417943 cites W2215750868 @default.
- W4213417943 cites W2219110163 @default.
- W4213417943 cites W2234053767 @default.
- W4213417943 cites W2265303192 @default.
- W4213417943 cites W2272508502 @default.
- W4213417943 cites W2272769310 @default.
- W4213417943 cites W2330155924 @default.
- W4213417943 cites W2343912965 @default.
- W4213417943 cites W2541229052 @default.
- W4213417943 cites W2732116467 @default.
- W4213417943 cites W2973809955 @default.
- W4213417943 cites W2981838126 @default.
- W4213417943 cites W2985831866 @default.
- W4213417943 cites W2999323915 @default.
- W4213417943 cites W3190675101 @default.
- W4213417943 cites W4247924743 @default.
- W4213417943 doi "https://doi.org/10.3389/fenrg.2022.784191" @default.
- W4213417943 hasPublicationYear "2022" @default.
- W4213417943 type Work @default.
- W4213417943 citedByCount "1" @default.
- W4213417943 countsByYear W42134179432023 @default.
- W4213417943 crossrefType "journal-article" @default.
- W4213417943 hasAuthorship W4213417943A5059359123 @default.
- W4213417943 hasAuthorship W4213417943A5067072304 @default.
- W4213417943 hasAuthorship W4213417943A5068051266 @default.
- W4213417943 hasAuthorship W4213417943A5072938130 @default.
- W4213417943 hasAuthorship W4213417943A5079453102 @default.
- W4213417943 hasBestOaLocation W42134179431 @default.
- W4213417943 hasConcept C11190779 @default.
- W4213417943 hasConcept C111919701 @default.
- W4213417943 hasConcept C116615679 @default.
- W4213417943 hasConcept C119599485 @default.
- W4213417943 hasConcept C121332964 @default.
- W4213417943 hasConcept C127413603 @default.
- W4213417943 hasConcept C133731056 @default.
- W4213417943 hasConcept C145420912 @default.
- W4213417943 hasConcept C149635348 @default.
- W4213417943 hasConcept C154945302 @default.
- W4213417943 hasConcept C15744967 @default.
- W4213417943 hasConcept C162324750 @default.
- W4213417943 hasConcept C163258240 @default.
- W4213417943 hasConcept C165801399 @default.
- W4213417943 hasConcept C173018170 @default.
- W4213417943 hasConcept C19417346 @default.
- W4213417943 hasConcept C2775924081 @default.
- W4213417943 hasConcept C2775936607 @default.
- W4213417943 hasConcept C2777303404 @default.
- W4213417943 hasConcept C2780365114 @default.
- W4213417943 hasConcept C2988876627 @default.
- W4213417943 hasConcept C33923547 @default.
- W4213417943 hasConcept C36139824 @default.
- W4213417943 hasConcept C41008148 @default.
- W4213417943 hasConcept C47446073 @default.
- W4213417943 hasConcept C50522688 @default.
- W4213417943 hasConcept C50644808 @default.
- W4213417943 hasConcept C62520636 @default.
- W4213417943 hasConceptScore W4213417943C11190779 @default.
- W4213417943 hasConceptScore W4213417943C111919701 @default.
- W4213417943 hasConceptScore W4213417943C116615679 @default.
- W4213417943 hasConceptScore W4213417943C119599485 @default.
- W4213417943 hasConceptScore W4213417943C121332964 @default.
- W4213417943 hasConceptScore W4213417943C127413603 @default.