Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213420057> ?p ?o ?g. }
- W4213420057 endingPage "1159" @default.
- W4213420057 startingPage "1159" @default.
- W4213420057 abstract "Liquid-based cytology (LBC) for cervical cancer screening is now more common than the conventional smears, which when digitised from glass slides into whole-slide images (WSIs), opens up the possibility of artificial intelligence (AI)-based automated image analysis. Since conventional screening processes by cytoscreeners and cytopathologists using microscopes is limited in terms of human resources, it is important to develop new computational techniques that can automatically and rapidly diagnose a large amount of specimens without delay, which would be of great benefit for clinical laboratories and hospitals. The goal of this study was to investigate the use of a deep learning model for the classification of WSIs of LBC specimens into neoplastic and non-neoplastic. To do so, we used a dataset of 1605 cervical WSIs. We evaluated the model on three test sets with a combined total of 1468 WSIs, achieving ROC AUCs for WSI diagnosis in the range of 0.89-0.96, demonstrating the promising potential use of such models for aiding screening processes." @default.
- W4213420057 created "2022-02-25" @default.
- W4213420057 creator A5028053690 @default.
- W4213420057 creator A5033481594 @default.
- W4213420057 creator A5033912314 @default.
- W4213420057 creator A5039241530 @default.
- W4213420057 creator A5072210064 @default.
- W4213420057 creator A5084798615 @default.
- W4213420057 date "2022-02-24" @default.
- W4213420057 modified "2023-10-10" @default.
- W4213420057 title "A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images" @default.
- W4213420057 cites W1495816825 @default.
- W4213420057 cites W1719820912 @default.
- W4213420057 cites W1906037527 @default.
- W4213420057 cites W1964200692 @default.
- W4213420057 cites W1977653087 @default.
- W4213420057 cites W1982222759 @default.
- W4213420057 cites W1985161776 @default.
- W4213420057 cites W1988558796 @default.
- W4213420057 cites W1996362313 @default.
- W4213420057 cites W2000572460 @default.
- W4213420057 cites W2004367332 @default.
- W4213420057 cites W2006272640 @default.
- W4213420057 cites W2011301426 @default.
- W4213420057 cites W2011717071 @default.
- W4213420057 cites W2016923949 @default.
- W4213420057 cites W2043291249 @default.
- W4213420057 cites W2073927517 @default.
- W4213420057 cites W2094581205 @default.
- W4213420057 cites W2104191316 @default.
- W4213420057 cites W2109840766 @default.
- W4213420057 cites W2113874502 @default.
- W4213420057 cites W2133059825 @default.
- W4213420057 cites W2141196337 @default.
- W4213420057 cites W2141766660 @default.
- W4213420057 cites W2147305806 @default.
- W4213420057 cites W2147541126 @default.
- W4213420057 cites W2155863717 @default.
- W4213420057 cites W2269649163 @default.
- W4213420057 cites W2302302587 @default.
- W4213420057 cites W2329826697 @default.
- W4213420057 cites W2332665748 @default.
- W4213420057 cites W2401520370 @default.
- W4213420057 cites W2408981068 @default.
- W4213420057 cites W2514628397 @default.
- W4213420057 cites W2525700671 @default.
- W4213420057 cites W2548615865 @default.
- W4213420057 cites W2594760301 @default.
- W4213420057 cites W2759004613 @default.
- W4213420057 cites W2760946358 @default.
- W4213420057 cites W2772723798 @default.
- W4213420057 cites W2796409016 @default.
- W4213420057 cites W2922268597 @default.
- W4213420057 cites W2922490216 @default.
- W4213420057 cites W2956228567 @default.
- W4213420057 cites W2964269074 @default.
- W4213420057 cites W2964345665 @default.
- W4213420057 cites W3004016611 @default.
- W4213420057 cites W3013526953 @default.
- W4213420057 cites W3127764565 @default.
- W4213420057 cites W3128646645 @default.
- W4213420057 cites W3139012405 @default.
- W4213420057 cites W3156423522 @default.
- W4213420057 cites W3156804249 @default.
- W4213420057 cites W316269977 @default.
- W4213420057 cites W4212793251 @default.
- W4213420057 cites W4319308442 @default.
- W4213420057 cites W52781737 @default.
- W4213420057 doi "https://doi.org/10.3390/cancers14051159" @default.
- W4213420057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35267466" @default.
- W4213420057 hasPublicationYear "2022" @default.
- W4213420057 type Work @default.
- W4213420057 citedByCount "15" @default.
- W4213420057 countsByYear W42134200572022 @default.
- W4213420057 countsByYear W42134200572023 @default.
- W4213420057 crossrefType "journal-article" @default.
- W4213420057 hasAuthorship W4213420057A5028053690 @default.
- W4213420057 hasAuthorship W4213420057A5033481594 @default.
- W4213420057 hasAuthorship W4213420057A5033912314 @default.
- W4213420057 hasAuthorship W4213420057A5039241530 @default.
- W4213420057 hasAuthorship W4213420057A5072210064 @default.
- W4213420057 hasAuthorship W4213420057A5084798615 @default.
- W4213420057 hasBestOaLocation W42134200571 @default.
- W4213420057 hasConcept C108583219 @default.
- W4213420057 hasConcept C121608353 @default.
- W4213420057 hasConcept C126322002 @default.
- W4213420057 hasConcept C126838900 @default.
- W4213420057 hasConcept C142724271 @default.
- W4213420057 hasConcept C154945302 @default.
- W4213420057 hasConcept C19527891 @default.
- W4213420057 hasConcept C2776136576 @default.
- W4213420057 hasConcept C2778220009 @default.
- W4213420057 hasConcept C2993522905 @default.
- W4213420057 hasConcept C41008148 @default.
- W4213420057 hasConcept C71924100 @default.
- W4213420057 hasConceptScore W4213420057C108583219 @default.
- W4213420057 hasConceptScore W4213420057C121608353 @default.
- W4213420057 hasConceptScore W4213420057C126322002 @default.