Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213439103> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4213439103 endingPage "9" @default.
- W4213439103 startingPage "1" @default.
- W4213439103 abstract "All human movements can be effectively represented with labanotation, which is simple to read and preserve. However, manually recording the labanotation takes a long time, so figuring out how to use the labanotation to accurately and quickly record and preserve traditional dance movements is a key research question. An automatic labanotation generation algorithm based on DL (deep learning) is proposed in this study. The BVH file is first analyzed, and the data are then converted. On this foundation, a CNN (convolutional neural network) algorithm for generating the dance spectrum of human lower-limb movements is proposed, which is very good at learning action space information. The algorithm performs admirably in terms of classification and recognition. Finally, a spatial segmentation-based automatic labanotation generation algorithm is proposed. To begin, every frame of data is converted into a symbol sequence using spatial law, resulting in a very dense motion sequence. The motion sequence is then regulated according to the minimum beat of motion obtained through wavelet analysis. To arrive at the final result, the classifier is used to determine whether each symbol is reserved or not. As a result, we will be able to create more accurate dance music for simple human movements." @default.
- W4213439103 created "2022-02-25" @default.
- W4213439103 creator A5040456319 @default.
- W4213439103 creator A5080045913 @default.
- W4213439103 date "2022-02-23" @default.
- W4213439103 modified "2023-10-17" @default.
- W4213439103 title "A Motion Capture Data-Driven Automatic Labanotation Generation Model Using the Convolutional Neural Network Algorithm" @default.
- W4213439103 cites W2282499115 @default.
- W4213439103 cites W2589033724 @default.
- W4213439103 cites W2933283296 @default.
- W4213439103 cites W2955154193 @default.
- W4213439103 cites W2964122084 @default.
- W4213439103 cites W2964649802 @default.
- W4213439103 cites W2969630114 @default.
- W4213439103 cites W2970934252 @default.
- W4213439103 cites W2979536538 @default.
- W4213439103 cites W2989390635 @default.
- W4213439103 cites W3005203414 @default.
- W4213439103 cites W3020836386 @default.
- W4213439103 cites W3030598404 @default.
- W4213439103 cites W3035227524 @default.
- W4213439103 cites W3083866271 @default.
- W4213439103 cites W3090991261 @default.
- W4213439103 cites W3092618872 @default.
- W4213439103 cites W3096616479 @default.
- W4213439103 cites W3139244586 @default.
- W4213439103 cites W3141052284 @default.
- W4213439103 cites W3142772534 @default.
- W4213439103 cites W3177172424 @default.
- W4213439103 cites W3195067547 @default.
- W4213439103 cites W3200364303 @default.
- W4213439103 doi "https://doi.org/10.1155/2022/2618940" @default.
- W4213439103 hasPublicationYear "2022" @default.
- W4213439103 type Work @default.
- W4213439103 citedByCount "4" @default.
- W4213439103 countsByYear W42134391032022 @default.
- W4213439103 countsByYear W42134391032023 @default.
- W4213439103 crossrefType "journal-article" @default.
- W4213439103 hasAuthorship W4213439103A5040456319 @default.
- W4213439103 hasAuthorship W4213439103A5080045913 @default.
- W4213439103 hasBestOaLocation W42134391031 @default.
- W4213439103 hasConcept C104114177 @default.
- W4213439103 hasConcept C11413529 @default.
- W4213439103 hasConcept C124952713 @default.
- W4213439103 hasConcept C142362112 @default.
- W4213439103 hasConcept C147446459 @default.
- W4213439103 hasConcept C153180895 @default.
- W4213439103 hasConcept C154945302 @default.
- W4213439103 hasConcept C31972630 @default.
- W4213439103 hasConcept C41008148 @default.
- W4213439103 hasConcept C48007421 @default.
- W4213439103 hasConcept C81363708 @default.
- W4213439103 hasConcept C89600930 @default.
- W4213439103 hasConcept C95623464 @default.
- W4213439103 hasConceptScore W4213439103C104114177 @default.
- W4213439103 hasConceptScore W4213439103C11413529 @default.
- W4213439103 hasConceptScore W4213439103C124952713 @default.
- W4213439103 hasConceptScore W4213439103C142362112 @default.
- W4213439103 hasConceptScore W4213439103C147446459 @default.
- W4213439103 hasConceptScore W4213439103C153180895 @default.
- W4213439103 hasConceptScore W4213439103C154945302 @default.
- W4213439103 hasConceptScore W4213439103C31972630 @default.
- W4213439103 hasConceptScore W4213439103C41008148 @default.
- W4213439103 hasConceptScore W4213439103C48007421 @default.
- W4213439103 hasConceptScore W4213439103C81363708 @default.
- W4213439103 hasConceptScore W4213439103C89600930 @default.
- W4213439103 hasConceptScore W4213439103C95623464 @default.
- W4213439103 hasFunder F4320325571 @default.
- W4213439103 hasLocation W42134391031 @default.
- W4213439103 hasLocation W42134391032 @default.
- W4213439103 hasOpenAccess W4213439103 @default.
- W4213439103 hasPrimaryLocation W42134391031 @default.
- W4213439103 hasRelatedWork W1669643531 @default.
- W4213439103 hasRelatedWork W2005437358 @default.
- W4213439103 hasRelatedWork W2008656436 @default.
- W4213439103 hasRelatedWork W2023558673 @default.
- W4213439103 hasRelatedWork W2039848376 @default.
- W4213439103 hasRelatedWork W2134924024 @default.
- W4213439103 hasRelatedWork W2286450329 @default.
- W4213439103 hasRelatedWork W2517104666 @default.
- W4213439103 hasRelatedWork W4244899002 @default.
- W4213439103 hasRelatedWork W4383504140 @default.
- W4213439103 hasVolume "2022" @default.
- W4213439103 isParatext "false" @default.
- W4213439103 isRetracted "false" @default.
- W4213439103 workType "article" @default.