Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213439603> ?p ?o ?g. }
- W4213439603 endingPage "104180" @default.
- W4213439603 startingPage "104180" @default.
- W4213439603 abstract "Pavement needs to be maintained from the moment its service life begins. The maintenance strategy is mainly based on pavement quality indexes, such as the road damage rate (DR). Accurate pavement distress detection is generally costly and complicated. An inappropriate pavement distress detection strategy could yield a low efficiency of budget usage and untreated road diseases. This study describes an innovative vision-based pavement crack detection strategy that provides a direct pavement surface condition index (PCI) for a specific pavement location. This strategy was achieved with the application of the convolutional neural network (CNN) algorithm to mine a database that contains over five thousand pavement distress images to classify the pavement crack type. To improve the accuracy of the network, a genetic algorithm (GA) was employed to optimize the model. To simultaneously consider the efficiency and accuracy, an enhanced image processing method was used to measure the DR of the pavement. The model input image size is 100 × 100 pixels and the test results showed that the proposed method has satisfactory performance in robustness, accuracy, and processing speed. The accuracy of classifying different crack types reached 98%, and the processing time for an image is 0.047 s. This research, for the first time, proposed an ellipse fitting method to calculate the block of mesh cracks. The overall accuracy in detecting the pavement damage rate reached 90%. This study demonstrates the potential of an innovative deep learning method in automated pavement quality index calculations to provide direct guidance for long-term asphalt pavement optimal rehabilitation and maintenance (R&M) decisions." @default.
- W4213439603 created "2022-02-25" @default.
- W4213439603 creator A5035051356 @default.
- W4213439603 creator A5047000286 @default.
- W4213439603 creator A5062883325 @default.
- W4213439603 creator A5069549198 @default.
- W4213439603 date "2022-04-01" @default.
- W4213439603 modified "2023-10-10" @default.
- W4213439603 title "Automated asphalt pavement damage rate detection based on optimized GA-CNN" @default.
- W4213439603 cites W1995130521 @default.
- W4213439603 cites W2019496031 @default.
- W4213439603 cites W2050787737 @default.
- W4213439603 cites W2598457882 @default.
- W4213439603 cites W2610909319 @default.
- W4213439603 cites W2768955070 @default.
- W4213439603 cites W2769644921 @default.
- W4213439603 cites W2889494142 @default.
- W4213439603 cites W2905053868 @default.
- W4213439603 cites W2918499589 @default.
- W4213439603 cites W2941356554 @default.
- W4213439603 cites W2944441395 @default.
- W4213439603 cites W2945689285 @default.
- W4213439603 cites W2958786696 @default.
- W4213439603 cites W2961288900 @default.
- W4213439603 cites W2964230520 @default.
- W4213439603 cites W2964308596 @default.
- W4213439603 cites W2989673213 @default.
- W4213439603 cites W2998997213 @default.
- W4213439603 cites W3001104520 @default.
- W4213439603 cites W3008692649 @default.
- W4213439603 cites W3009621818 @default.
- W4213439603 cites W3014583121 @default.
- W4213439603 cites W3024770686 @default.
- W4213439603 cites W3033645921 @default.
- W4213439603 cites W3036991312 @default.
- W4213439603 cites W3082546509 @default.
- W4213439603 cites W3085136768 @default.
- W4213439603 cites W3087277009 @default.
- W4213439603 cites W3095604565 @default.
- W4213439603 cites W3112969194 @default.
- W4213439603 cites W3114260360 @default.
- W4213439603 cites W3121502091 @default.
- W4213439603 cites W3166512019 @default.
- W4213439603 cites W3185563625 @default.
- W4213439603 cites W3186248524 @default.
- W4213439603 doi "https://doi.org/10.1016/j.autcon.2022.104180" @default.
- W4213439603 hasPublicationYear "2022" @default.
- W4213439603 type Work @default.
- W4213439603 citedByCount "26" @default.
- W4213439603 countsByYear W42134396032022 @default.
- W4213439603 countsByYear W42134396032023 @default.
- W4213439603 crossrefType "journal-article" @default.
- W4213439603 hasAuthorship W4213439603A5035051356 @default.
- W4213439603 hasAuthorship W4213439603A5047000286 @default.
- W4213439603 hasAuthorship W4213439603A5062883325 @default.
- W4213439603 hasAuthorship W4213439603A5069549198 @default.
- W4213439603 hasConcept C104317684 @default.
- W4213439603 hasConcept C127413603 @default.
- W4213439603 hasConcept C147176958 @default.
- W4213439603 hasConcept C154945302 @default.
- W4213439603 hasConcept C168056786 @default.
- W4213439603 hasConcept C185592680 @default.
- W4213439603 hasConcept C205649164 @default.
- W4213439603 hasConcept C2778713851 @default.
- W4213439603 hasConcept C2780996376 @default.
- W4213439603 hasConcept C2781212230 @default.
- W4213439603 hasConcept C40084718 @default.
- W4213439603 hasConcept C41008148 @default.
- W4213439603 hasConcept C50644808 @default.
- W4213439603 hasConcept C55493867 @default.
- W4213439603 hasConcept C58640448 @default.
- W4213439603 hasConcept C63479239 @default.
- W4213439603 hasConcept C71039073 @default.
- W4213439603 hasConcept C78519656 @default.
- W4213439603 hasConceptScore W4213439603C104317684 @default.
- W4213439603 hasConceptScore W4213439603C127413603 @default.
- W4213439603 hasConceptScore W4213439603C147176958 @default.
- W4213439603 hasConceptScore W4213439603C154945302 @default.
- W4213439603 hasConceptScore W4213439603C168056786 @default.
- W4213439603 hasConceptScore W4213439603C185592680 @default.
- W4213439603 hasConceptScore W4213439603C205649164 @default.
- W4213439603 hasConceptScore W4213439603C2778713851 @default.
- W4213439603 hasConceptScore W4213439603C2780996376 @default.
- W4213439603 hasConceptScore W4213439603C2781212230 @default.
- W4213439603 hasConceptScore W4213439603C40084718 @default.
- W4213439603 hasConceptScore W4213439603C41008148 @default.
- W4213439603 hasConceptScore W4213439603C50644808 @default.
- W4213439603 hasConceptScore W4213439603C55493867 @default.
- W4213439603 hasConceptScore W4213439603C58640448 @default.
- W4213439603 hasConceptScore W4213439603C63479239 @default.
- W4213439603 hasConceptScore W4213439603C71039073 @default.
- W4213439603 hasConceptScore W4213439603C78519656 @default.
- W4213439603 hasLocation W42134396031 @default.
- W4213439603 hasOpenAccess W4213439603 @default.
- W4213439603 hasPrimaryLocation W42134396031 @default.
- W4213439603 hasRelatedWork W1963630068 @default.
- W4213439603 hasRelatedWork W2090346518 @default.
- W4213439603 hasRelatedWork W2361188464 @default.